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Standard microeconomic model of consumer choice 
 
Consumption bundle – a collection of goods 
x=(x1,...,xN) taken out of a consumption set X: 

xXN. Normally it is also assumed that x≥0. 
 

Let p=(p1,...,pN) be the vector of prices of goods from 
the consumer's bundle and let m>0 be the 
consumer's income (money to be spent on the 
bundle). Then the consumer's budgetary constraint is: 
 

• p1x1+...+pNxN≤m, and 
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• p1x1+...+pNxN=m 
 
is called budget line. The set 
 

• {xX: p1x1+...+pNxN≤m} 
 
is called budget set. 
 
Utility Maximization Problem (UMP) is solving the 
problem of consumer's choice under budgetary 
constraint (with utility as a real function representing 
preferences) 
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"Utility", analysed in economics in order to simplify relationships 
between bundles, was introduced in the 19th century. In 
mathematical language its definition reads: a utility function 

u:X→ representing ≥ is any function such that x,yX [x≥y  

u(x)u(y)]. 
 

Expression x≥y means bundle x is preferred over bundle y. 
Preference relation uses the same symbol as arithmetic relation 
(greater than or equal to). This, however, shall not lead to any 
doubts, since it will always be clear from the context whether 
the formula "x≥y" means "x is preferred over y" or "x is greater 
than or equal to y". If x and y are consumption alternatives 

(bundles), i.e. x,yX, then the formula reads "x is preferred over 
y", but if x and y are numbers then the formula reads "x is 
greater than or equal to y". 
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Standard model of consumer choice in 2 
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Theorem 1: If u:X→ is a continuous function, and all 
prices are positive (pi>0 for i=1,...,N) then UMP has a 
solution (x1

*,...,xN
*)=x*(p,m) 

 
Theorem 2: In the theorem 1 above, if u is strictly 
concave then the solution is unique 
 
Theorem 3 (Kuhn-Tucker conditions): 
In the theorem 1 above, under differentiability 
assumptions, a solution of the UMP satisfies: 
 

λ≥0 i=1,...,N [∂u(x*)/∂xi≤λpi & x*
i>0  ∂u(x*)/∂xi=λpi] 
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Theorem 4 (Corollary): 
Theorem 3 implies that for a solution of the UMP such 

that i=1,...,N [x*
i>0] (internal solution) 

 

∂u(x*)/∂xi : ∂u(x*)/∂xj = pi : pj 
 

for any i,j=1,...,N 
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Expected utility theory 
 
Bundles are interpreted as lotteries 
 
(D.1) Elements of the set X can be interpreted as 
lotteries L=(p1,...,pN), where p1+...+pN=1 
L – set of such lotteries; their outcomes – numbered 

1,...,N – are predetermined 
 
(T.1) A convex combination of lotteries is also a lottery 
(with probabilities calculated as convex combinations 
of probabilities from original lotteries). Easy to prove 
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(T.2) Preferences ≥ are continuous on L, if for all 

L,L',L"L the following sets are closed: 
 

{α[0,1]: αL+(1–α)L'≥L"} 
and 

{α[0,1]: L"≥αL+(1–α)L'} 
Easy to prove 
 
Note: 
Continuity of preferences is defined in the "standard" 
consumer theory 
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(D.2) Preferences ≥ satisfy the independence axiom 

in L, if for every L,L',L"L and every number α (0,1) 

L≥L' is satisfied if and only if 
αL+(1–α)L" ≥ αL'+(1–α)L" 

 
(D.3) The von Neumann-Morgenstern (vNM) 
expected utility function, U: 
U: has the "expected utility form", when 

 u1,...,uN  L=(p1,...,pN) L [U(L) = u1p1+...+uNpN] 
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(D.4) Bernoulli utilities 
Numbers ui from D.3 can be interpreted as utilities of 
"degenerated lotteries" L1=(1,0,...,0),...,LN=(0,...,0,1) 
 

(T.3) A utility function U:L→ has the "expected utility 

form" if and only if 

 K=1,2,...  L1,...,LKL  α1,...,αK>0 [α1+...+αK=1  

U(α1L1+...+αK LK) = α1U(L1)+...+αKU(LK)] 
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Proof  
Let L=(p1,...,pN). We define degenerated lotteries 
L1,...,LN such that Li=(0,...,0,1,0,...,0); the ith 
probability is equal to 1. Then L=p1L1+...+pNLN and 
U(L) = U(p1L1+...+pNLN) = p1U(L1)+...+pNU(LN) = 
= p1u1+...+pNuN, where the second to the last 
equality holds by the assumption. 
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Proof  
Let us consider a combination of lotteries 
(L1,...,Lk;α1,...,αk), where Lk=(p1

k,...,pN
k). Let 

L'=α1L1+...+αkLk. Hence it can be calculated that: 
U(L') = U(α1L1+...+αkLk) = 
u1(α1p1

1+...+αkp1
k)+...+uN(α1pN

1+...+αkpN
k) = 

= α1(u1p1
1+...+uNpN

1)+...+αk(u1p1
k+...+uNpN

k) = 
α1U(L1)+...+αkU(Lk), where the second to the last 
equality follows from the assumption. 
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(T.4) The expected utility theorem 
If a preference relation ≥ in L is rational (i.e. complete 

and transitive), and satisfies independence and 
continuity axioms then it can be represented by a 
vNM function, i.e. numbers un can be attributed to 
each outcome n=1,...N such that: 
 

 L=(p1,...,pN),L'=(p'1,...,p'N)L 

[L≥L'  u1p1+...+uNpN≥u1p'1+...+uNp'N] 
 
Difficult to prove 
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(D.5) Lottery with monetary payoffs 
The lottery has monetary payments x1,...,xN, and 

Bernoulli utilities are a function u: → of these 
payments: u(x1),...,u(xN). 
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Warning I (the Allais paradox) 
 
 There are three outcomes of lotteries: 

• x1=0, 

• x2=1 million USD, and 

• x3=5 million USD 
 
Experiment 1 (most people prefer L1): 
Choose between two lotteries: 
L1=(0,1,0) and L2=(0.01,0.89,0.1) 
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Experiment 2 (most people prefer L4): 
Choose between two lotteries: 
L3=(0.89,0.11,0) and L4=(0.9,0,0.1) 
 
Theorem 
People who choose L1 in the first experiment and L4 
in the second one do not comply with the vNM theory. 
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Proof: 

If the vNM theory was followed, then Bernoulli's 
utilities would have been applied: 
 

• u(x1)=u1, 

• u(x2)=u2, and 

• u(x3)=u3. 
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Proof (cont.): 

If the vNM theory was followed, then Bernoulli's 
The outcome of the first experiment implies that: 

 u2>0.01u1+0.89u2+0.1u3. 
The outcome of the second one implies that: 

 0.9u1+0.1u3>0.89u1+0.11u2. 
These two inequalities contradict each other, since 
the second one can rewritten as: 

 0.01u1+0.1u3>0.11u2, and consequently 
 0.01u1+0.1u3>u2-0.89u2, or 
 0.01u1+0.89u2+0.1u3>u2 

which contradicts the first one. 



GT-1-19 

 
Warning II (the Machina's paradox) 
 
 There are three outcomes of lotteries: 

• x1=0, 

• x2=10 USD, and 

• x3=10,000 USD 
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It is obvious that u(x1)<u(x2)<u(x3); hence L1≤L2≤L3, 
where L1=(1,0,0), L2=(0,1,0), and L3=(0,0,1). Thus, 
by the independence axiom, the lottery 
0.001L2+0.999L3 should be preferred over 
0.001L1+0.999L3. And yet experiments show that 
most people choose otherwise. 

 
Conclusion: The expected utility theory may be 
insufficient to model people's behaviour in some 
applications 
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Questions: 
 
Q-1 The concept of rational preferences over lotteries differs from the "standard" (deterministic) 
approach to consumer theory by assuming that 
[a] preferences may be not transitive 
[b] consumers are not certain what outcomes their purchases will imply 
[c] consumers do not understand probabilities 
[d] preferences may be not complete 
[e] none of the above 
 

Exercises: 
 

E-1 Check whether a utility function U: L→ has the "expected utility form" if and only if 

 L1,L2L [U(L1/2+L2/2) = U(L1)/2+U(L2)/2] 
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Risk aversion 
 
(D.6) Risk aversion and risk neutrality implied by 
Bernoulli utilities 

L=(p1,...,pN)L 

[u(x1)p1+...+u(xN)pN ≤ u(x1p1+...+xNpN)] (aversion) 

L=(p1,...,pN)L 

[u(x1)p1+...+u(xN)pN = u(x1p1+...+xNpN)] (neutrality) 
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(D.7) Certainty equivalent of the lottery L=(p1,...,pN) is 
a number c(L,u) such that 
 

u(c(L,u))=u(x1)p1+...+u(xN)pN 
 
(T.5) The following conditions are equivalent: 

1. A consumer is risk averse 
2. Function u is concave 

3. L=(p1,...,pN)L [c(L,u) ≤ x1p1+...+xNpN] 

Easy to prove 
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Risk averse (left) and risk loving (right) 
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(D.8) Arrow-Pratt coefficient of absolute risk aversion 

rA(x,u)=-u"(x)/u'(x) 
assuming that u(.) is a twice-differentiable Bernoulli 
utility function of money 
 
Note 
Assuming that u'>0 and u"<0, rA is a positive number 
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(T.6) Comparisons across individuals 
Let u1, u2 be Bernoulli utility functions characterizing 
two individuals. Then the following conditions are 
equivalent: 

1. rA(x,u2)≥rA(x,u1) for every xX 
2. There exists an increasing concave function 

ψ:→ such that ψ(u1(x))=u2(x) for every xX 

3. c(L,u2)≤c(L,u1) for every LL 
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Proof: 

There will be only proof of (1)↔(2). The proof of 
(2)↔(3) is more difficult. It will be assumed that 
u1',u2'>0 (otherwise Arrow-Pratt coefficients cannot 
be defined). 
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Proof (cont.) 

The most tricky step is to observe that there exists 

an increasing function ψ:→ such that 

ψ(u1(x))=u2(x) for every xX (in fact, there exists 

an increasing function ψ:→ such that 

ψ(u2(x))=u1(x) for every xX, but we will use the 
first statement only). The existence of such a 
function results from the fact that u2 and u1 are 
increasing functions (as utilities). As both u2 and u1 
are differentiable, it can be assumed that ψ is 
differentiable too. 
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Proof (cont.) 

Let us differentiate ψ(u1(x))=u2(x), yielding 
u2'=ψ'(u1)u1'; and then again, yielding 
u2"=ψ"(u1)u1'+ψ'(u1)u1". Dividing u2" into u2' we get 
(after cancellations): u2"/u2'=ψ"(u1)/ψ'(u1)+u1"/u1'. In 
other words, rA(x,u2)=-ψ"(u1)/ψ'(u1)+rA(x,u1). Thus 
we will have rA(x,u2)≥rA(x,u1) if and only if 
-ψ"(u1)/ψ'(u1)≥0, i.e. if ψ is concave. 
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(D.9) Arrow-Pratt coefficient of relative risk aversion 

rR(x,u)=-xu"(x)/u'(x) 
assuming that u(.) is a twice-differentiable Bernoulli 
utility function of money 
 
Note: rR(x,u)=xrA(x,u), and rA(x,u)=rR(x,u)/x 
 
Corollary: A risk averse individual with fixed (constant 
with respect to x) coefficient of absolute risk aversion 
will reveal an increasing (with respect to x) coefficient 
of relative risk aversion 
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(D.10) A fair price of a lottery ticket: 

The price t(L) equal to the expected payoff, i.e. 
if L=(p1,...,pN), and the corresponding payoffs are 
x1,...,xN, then t(L)= x1p1+...+xNpN 

 
Corollary: 

For a risk neutral consumer c(L,u)=t(L) 
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Questions: 
 
Q-2 A risk-averse consumer will 
[a] always prefer a lottery with higher payoffs 
[b] require that certainty equivalent is higher than the price of the ticket 
[c] not buy a lottery ticket whose price is even slightly higher than the expected payoff 
[d] always buy a lottery ticket at a fair price 
[e] none of the above 
 

Exercises: 
 
E-2 Prove that the only utility function u implying a constant Arrow-Pratt coefficient of absolute 
risk aversion A>0 is u(x)=B-Ce-Ax for some real number B, and for some constant C>0. 
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Return-Risk Comparisons 
 
Ordering convention: 

{x1,...,xN}=X, and x1<...<xN 
 
(D.11) First-Order Stochastic Dominance 

Let L=(p1,...,pN) ,L'=(p'1,...,p'N) L. L first-order 

stochastically dominates L' if and only if, for every 

nondecreasing function u:X→: 
p1u(x1)+...+pNu(xN) ≥ p'1u(x1)+...+p'Nu(xN) 
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Example I 
 
Let there be 6 outcomes of throwing dice: 

x1=1, x2=2, x3=3, x4=4, x5=5, x6=6. 
Let L be a lottery that we are used to, i.e. 

L=(1/6, 1/6, 1/6, 1/6, 1/6, 1/6). 
Its average outcome is E(x) = 3.5 
We will define alternative lotteries L' (with the same 
outcomes), and analyse how they are perceived by 
consumers with different attitudes towards risk 
(demonstrated by different utility functions u). 
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Example I (cont.) 
Examples of alternative utility functions 
(corresponding to alternative attitudes towards risk; 
please note that they are nondecreasing, i.e. they 
satisfy D.11): 
 
• u(x) = 0 = const (a consumer ignoring money) 
• u(x) = x (a risk-neutral consumer) 
• u(x) = x2 (a risk-loving consumer) 
• u(x) = x1/2 (a risk-averse consumer) 
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Example I (cont.) 
The values of the left-hand-side (LHS) of the 
inequality in D.11 therefore are: 

• (0+0+0+0+0+0)/6 = 0 

• (1+2+3+4+5+6)/6 = 3.5 

• (1+4+9+16+25+36)/6 = 91/6 = 15.17 

• (1+1.41+1.73+2+2.24+2.45)/6 = 1.81 
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Example I (cont.) 
Now we define 3 alternative lotteries L': 
 

• L' = (1, 0, 0, 0, 0, 0) with E(x) = 1 

• L' = (0, 0, 0, 0, 0, 1) with E(x) = 6 

• L' = (0, 0, ½, ½, 0, 0) with E(x) = 3.5 
 

The first and the second are degenerated ones. 
For each of the three lotteries, we will calculate the 
value of the right-hand-side (RHS) of the inequality (in 
D.11) for the utility functions defined earlier. 
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Example I (cont.) 
For the lottery L' = (1, 0, 0, 0, 0, 0): 
 

• u(x)=0=const  RHS = 0 

• u(x)=x  RHS = 1 

• u(x)=x2  RHS = 1 

• u(x)=x1/2  RHS = 1 
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Example I (cont.) 
For the lottery L' = (0, 0, 0, 0, 0, 1): 
 

• u(x)=0=const  RHS = 0 

• u(x)=x  RHS = 6 

• u(x)=x2  RHS = 36 

• u(x)=x1/2  RHS = 2.45 
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Example I (cont.) 
For the lottery L' = (0, 0, ½, ½, 0, 0): 
 

• u(x)=0=const  RHS = 0 

• u(x)=x  RHS = 3.5 

• u(x)=x2  RHS = 12.5 

• u(x)=x1/2  RHS = 3.73 
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Example I (cont.) 
Summing up these calculations, we can see that 
For the lotteries 
 

• L=(1/6,1/6,1/6,1/6,1/6,1/6) and L'=(1, 0, 0, 0, 0, 0): 
LHS ≥ RHS for all four utility functions analysed 

• L=(1/6,1/6,1/6,1/6,1/6,1/6) and L'=(0, 0, 0, 0, 0, 1): 
the inequality does not hold for utility functions #2, 
#3, and #4 

• L=(1/6,1/6,1/6,1/6,1/6,1/6) and L'=(0, 0, ½, ½, 0, 0): 
the inequality does not hold for utility function #4 
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(T.7) 

L first-order stochastically dominates L' if and only 
if, p1≤p'1, p1+p2≤p'1+p'2,..., p1+...+pN-1≤p'1+...+p'N-1. 

Proof  only: 
From the definition of probabilities we obviously 
know that p1+...+pN=p'1+...+p'N=1. Thus, for any 
i=2,...,N-1 we have p1+...+pi-1=1-(pi+...+pN) and 
p1+...+pN-1=1-pN, and p'1+...+p'i-1=1-(p'i+...+p'N) and 
p'1+...+p'N-1=1-p'N. This makes the proof easier. The 
argument will be based on the fact that any 

implication pq is equivalent to ⌐q⌐p. 
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Let us assume that p1+...+pi-1>p'1+...+p'i-1 (for some 

i), i.e. pi+...+pN<p'i+...+p'N. A function u:X→ 
defined as u(x)=0 for x≤xi-1 and u(x)=1 for x≥xi is 
non-decreasing. At the same time 
p1u(x1)+...+pNu(xN) < p'1u(x1)+...+p'Nu(xN) (because 
p1u(x1)+...+pi-1u(xi-1)=p'1u(x1)+...+p'i-1u(xi-1)=0) which 
means that L does not first-order stochastically 
dominates L'. 
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Corollary 
In the Example I only the first lottery – 
L'=(1,0,0,0,0,0) – satisfies the inequalities from T.7 
(1/6<1, 1/3<1, 1/2<1, 2/3<1, and 5/6<1). Thus L 
first-order stochastically dominates over L'. For 
other pairs of lotteries (L and L'), some inequalities 
do not hold. 
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(D.12) Second-Order Stochastic Dominance 
For any two lotteries L and L' with the same mean 
(i.e. when p1x1+...+pNxN=p'1x1+...+p'KxK=μ) L second-
order stochastically dominates L' (L is less risky than 
L') if for every nondecreasing concave function 

u:X→: 
p1u(x1)+...+pNu(xN) ≥ p'1u(x1)+...+p'Ku(xK) 
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(D.13) Mean-preserving spread 
Let L be a lottery with mean μ, and let Lx" be a family 
of lotteries indexed with x (outcomes of the lottery L) 
such that means of each lottery Lx" are equal zero. 
Thus L=(p1,...,pN), p1x1+...+pNxN=μ, and 
Lx"=(px

1,...,px
K), px

1zx
1+...+px

Kzx
K=0. Let L' be a 

compound lottery with Lx" superimposed on L, where 
its outcomes are x+z with appropriate probabilities. 
The mean of L' is thus μ. L' is called a mean 
preserving spread of L. 
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(T.8) If L and L' have the same mean then the 
following statements are equivalent: 

1. L second-order stochastically dominates L' 
2. L' is a mean-preserving spread of L 

Difficult to prove 
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Example II 
Let L=(1/2,1/2), with x1=2, and x2=3; and let 
L2"=(1/2,1/2), with z2

1=-1, z2
2=1, and let L3"=(1/2,1/2), 

with z3
1=-1, z3

2=1. Thus we obtain the following 
compound lottery: L'=(1/4,1/4,1/4,1/4) with outcomes: 
1, 2, 3, and 4. As L2" and L3" have mean zero, L' is a 
mean preserving spread of L. 
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Example II (cont.) 
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Questions: 
 
Q-3 A mean preserving spread 
[a] lets risk averse players enjoy less risky lotteries 
[b] transforms the original lottery into one with a higher variance 
[c] yields a lower certainty equivalent than the original lottery 
[d] is a lottery with a number of outcomes higher than the original lottery 
[e] none of the above 
 

Exercises: 
 
E-3 Prove that first order stochastic dominance (for lotteries with identical means) implies the 
second order stochastic dominance, but the converse is not true. 
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Introduction to strategic form games 
 
(D.14) Non-zero sum two-person game 
A representation of a decision situation with a table of 
pairs of numbers (Pij,Dij). Index i=1,...,m, where m is 
the number of strategies (decision variants) for the 
first player, and j=1,...,n, where n is the number of 
strategies (decision variants) for the second player. 
The numbers Pij are payments to the first player, and 
Dij – to the second player, if the first chose the ith 
strategy, and the second – the jth one. Payments can 
be interpreted as utilities. 
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Note: extensions 
 
The D.14 can be generalized into n-person games. 
The notation becomes more complex, because 
simultaneous decisions of three or more players 
cannot be represented by a single matrix. The 'non-
zero sum' expression allows for 'zero sum' games as 
well. 'Non-zero sum' refers to the fact that Pij+Dij is not 
necessarily zero. If incidentally Pij+Dij=0 (i.e. Pij=-Dij) 
the entire framework works, even though certain 
additional facts can be observed. 
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(D.15) 
The strategy i0 of the first player is called (strictly) 
dominant, if for any strategy i of the first player, and 
any strategy j of the second player, Pi0j>Pij; likewise, 
strategy i0 is (strictly) dominated, if there exists 
strategy i such that for any strategy j, Pi0j<Pij. 
(analogously for strategies of the second player). 
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Example 
 

 Second 
L R 

First 
U (1,3) (4,1) 
D (0,2) (3,4) 

 

U is (strictly) dominant for the First. D is not likely to 
be played. Therefore the game reduces to: 
 

 Second 
L R 

First U (1,3) (4,1) 
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Example (cont.) 
 

Then R is (strictly) dominated for the Second player, 
and therefore it is not likely to be played. Thus the 
game is iteratively reduced to 
 

 Second 
L 

First U (1,3) 
 

In other words, the solution is (U,L). Please note that 
the same result would be obtained if (strictly) 
dominated strategies of the Second player were 
eliminated first. 
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(D.16) 
The strategy i0 of the first player is called weakly 
dominant, if for any strategy i of the first player, and 
any strategy j of the second player, Pi0j≥Pij with strict 
inequality for at least one strategy of the second 
player; likewise, strategy i0 is weakly dominated, if 
there exists strategy i such that for any strategy j, 
Pi0j≤Pij with strict inequality for at least one strategy 
(analogously for strategies of the second player). 
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Example 
 

 Second 
L R 

First 
U (5,1) (4,0) 
M (6,0) (3,1) 
D (6,4) (4,4) 

 
Strategies U and M are weakly dominated by D. If U 
is eliminated, the game reduces to: 
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Example (cont.) 
 

 Second 
L R 

First 
M (6,0) (3,1) 
D (6,4) (4,4) 

 
The second player can eliminate L as weakly 
dominated by R. The game reduces to: 
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Example (cont.) 
 

 Second 
R 

First 
M (3,1) 
D (4,4) 

 
Now the First player can eliminate M, and the game 
reduces to:  

 Second 
R 

First D (4,4) 
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Example (cont.) 
 
However strategies can be eliminated in a different 
order. If M is eliminated first, the game reduces to: 
 

 Second 
L R 

First 
U (5,1) (4,0) 
D (6,4) (4,4) 
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Example (cont.) 
 
Now R becomes weakly dominated, and the game 
reduces to:  
 

 Second 
L 

First 
U (5,1) 
D (6,4) 
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Example (cont.) 
 
The First player may eliminate U now, and the game 
reduces to: 
 

 Second 
L 

First D (6,4) 
 

Please note that this is a different outcome than in the 
previous elimination sequence. Hence weak 
dominance does not justify a reasonable iterative 
elimination procedure. 
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(D.17) Nash strategy 
Any pair of strategies (i0,j0) such that Pi0j0=maxi{Pij0} 
and Di0j0=maxj{Di0j}. 
 
(T.9) Corollary of D.15, D.16, and D.17 
If players have (either strictly or weakly) dominant 
strategies, then their pair is a Nash equilibrium 
Proof: 

If there is i0 such that Pi0j≥Pij for any j, and there is j0 
such that Dij0≥Dij for any i, then (i0,j0) is a Nash 
strategy. Please also note that if both inequalities 
are strict then the equilibrium is unique. 
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Example (Prisoner's Dilemma) 
 

 Second 
C D 

First 
C (-12,-12) (0,-18) 
D (-18,0) (-1,-1) 

 
Nash equilibrium is for (C,C) which is the very worst 
outcome for two players; i.e. Nash equilibrium does 
not necessarily 'optimize' the global outcome (which – 
in this case – would be (D,D)) 
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Note 
Strategies making a Nash equilibrium do not have to 
be dominant ones (see e.g. the game from E-4) 
 

(T.10) Alternative definition of Nash equilibrium 
If players are in a Nash equilibrium, then – if they 
wish to maximize their payoffs – neither has a 
motivation to unilaterally change his or her strategy 
 

Note (behavioural assumption) 
Nash equilibrium explains market equilibrium in some 
circumstances (examples: Cournot and Bertrand 
models of duopoly) 
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Questions: 
 
Q-4 In two-person non-zero sum games Nash equilibrium 
[a] guarantees maximum possible payoffs for each of the players 
[b] relies on weakly dominant strategies of both players 
[c] involves strategies that do not provide incentives for a unilateral change 
[d] can always be found iteratively by eliminating strictly dominated strategies 
[e] none of the above 
 

Exercises: 
 
E-4 Provide economic interpretation of a so-called coordination game. Identify its Nash 
equilibria (if any): 

 Second 

First 

 L R 

U (1,1) (-1,-1) 

D (-1,-1) (1,1) 
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Strategic form games 
 
Note 
There exist games with no Nash equilibrium. See e.g. 
 

 M 
Y N 

F 
Y (4,2) (-2,3) 
N (2,1) (-1,0) 
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(D.18) Mixed strategies 
Strategies defined so far are called pure. A game can 
be defined where pure strategies are selected by 
players randomly with certain probabilities 

=(1,...,m) and =(1,...,n), respectively (for the first 

and the second player), where 1,...,m0, 

1+...+m=1 and 1,...,n0, 1+...+n=1. The pair (,) 
is called a mixed strategy selection. 
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(D.19) Payoffs in games with mixed strategies 
If the players select mixed strategies, then the payoffs 
are understood as expected payoffs from their pure 
strategies. In other words, the payoff for the first is 

ijijPij, and for the second is ijijDij. 
 
Note 
A 'traditional' game (with pure strategies) can be 
interpreted as a mixed-strategy game where 
probabilities can be either 0 or 1 (they are 
'degenerate') 
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Note 
Nash equilibrium definition can be generalized for 
mixed strategies. In other words, a pair of strategies 

(0,0) is a Nash equilibrium, if 

• iji
0j

0Pij=max{ijij
0Pij}, and 

• iji
0j

0Dij=max{iji
0jDij}. 

 
(T.11) 
For every non-zero sum two-person game there 
exists a Nash equilibrium for mixed strategies (proof 
can be derived from the Brouwer's fixed-point 
theorem; difficult). 



GT-5-5 

 
Example 
The game from the note has a Nash equilibrium in 
mixed strategies: 
 

If p is the probability of choosing Y for the player F, 
and q is the probability of choosing Y for the player 
M, then (1/2,1/2;1/3,2/3) is the Nash equilibrium in 
mixed strategies (when p=1/2, and q=1/3 the players 
do not have incentives to unilaterally change these 
probabilities). 
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(D.20) Game in a normal (condensed, strategic) 

form, N = [I, S1...SI, (u1,...,uI)], where 

1. Si – set of strategies of player i (siSi) 
2. ui(s1,...,sI) – a payoff function whose values can 

be interpreted as expected utilities (in the von 
Neumann-Morgenstern sense) of outcomes 
(perhaps probabilistic ones) 



GT-5-7 

 
Note 
D.20 generalizes D.14 by letting the number of 
players be I (instead of 2), introducing abstract 
"strategies" (instead of "rows" and "columns"), and 
utilities instead of payoffs. 
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(D.21) Notational convention: s-i = (s1,...,si-1,si+1,...,sI) 
 
(D.22) Correlated equilibrium 
Probability distribution p over the set of strategies 

S=S1...SI such that for every player i and every 
permutation di : Si→Si 

∑sS p(s)ui(si,s-i)  ∑sS p(s)ui(di(si),s-i) 
 
(T.12) 
Nash equilibrium is a correlated equilibrium for a 
degenerate distribution p. More precisely: p(i0,j0)=1, 
and for every (i,j)≠ (i0,j0), p(i,j)=0 (easy to prove). 
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Example I 
 
There are two Nash equilibria in the following so-
called coordination game from E-4: (U,L), and (D,R) 
 

 Second 

First 
 L R 

U (1,1) (-1,-1) 
D (-1,-1) (1,1) 

 

However, if the players choose their strategies 
randomly and independently (with probabilities 1/2), 
their average payoffs will be 0. 
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Example I (cont.) 
 
If they choose strategies based on a random but 
publicly observed signal s, such like, say, s=Heads or 
s=Tails; and if s=Heads then First plays U and 
Second plays L, while if s=Tails then First plays D 
and Second plays R. This is a correlated equilibrium 
with payoffs equal to 1 enjoyed by both players. 
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Example II 
 
In the following game 
 

 Second 

First 
 L R 

U (5,1) (0,0) 
D (4,4) (1,5) 

 

there are two Nash equilibria (U,L) and (D,R). If the 
players choose their strategies randomly and 
independently (with probabilities 1/2), then – on 
average – they will get 2.5 each. 
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Example II (cont.) 
 
Please note that no publicly available signal can 
motivate them to play (D,L), i.e. the combination 
yielding the maximum sum of payoffs. 
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Example III 
 
Let us consider the following 3-person game: 
 

 L R   L R   L R 
U 0,1,3 0,0,0 U 2,2,2 0,0,0 U 0,1,0 0,0,0 
D 1,1,1 1,0,0 D 2,2,0 2,2,2 D 1,1,0 1,0,3 
 A  B  C 

 

First chooses U or D, Second chooses L or R, Third 
chooses the payoff matrix, and the unique Nash 
equilibrium is (D,L,A) with payoffs 1 to each of the 
players 
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Example III (cont.) 
 
Let us assume that players choose a correlating 
device such that s=Heads or s=Tails, and the signal is 
revealed to First and Second, but not to the Third 
player. A correlated equilibrium is 

(U/2,D/2,L/2,R/2,0A,1B,0C) 
with expected payoffs 

(2,2,2). 
If s=Heads then First plays U, otherwise D. If 
s=Heads then Second plays L, otherwise R. 
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Example III (cont.) 
 
Please note that if the outcome of flipping the coin 
was revealed to the Third player, there would be no 
correlated equilibrium. 
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Note 
Interpretations of Nash equilibrium 

1. Self-enforcing agreement 
2. Stable social convention 
3. Evolutionary stable behaviour 
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Questions: 
 
Q-5 Correlated equilibrium generalizes the concept of Nash equilibrium by 
[a] assuming that players may communicate with each other directly 
[b] letting some of them know others' decisions in advance 
[c] assuming that some players may observe some random signals making others' decisions 

more likely 
[d] allowing strategies to be chosen with certain probabilities rather than deterministically 
[e] none of the above 
 

Exercises: 
 
E-5 Demonstrate that in Example II, by an appropriate design of a signalling device, the players 
can guarantee expected payoffs 3 1/3 each in equilibrium. However they cannot achieve the 
best joint outcome (4,4) in equilibrium. 
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Bayesian games (games with incomplete information) 
 
Conditional probability 
 

P(A│B) = P(A∩B)/P(B) 
 
Bayes formula (the simplest version) 
 

P(A│B)  =  P(B│A)·P(A) / P(B) 
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Example I (sampling four balls from two boxes) 
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Example I (cont.) 
 
 

• P(G│L) = P(G∩L)/P(L) = (1/2)/(1/2) = 1, 
• P(G│R) = P(G∩R)/P(R) = (1/4)/(1/2) = 1/2, 
• P(W│L) = P(W∩L)/P(L) = 0/(1/2) = 0, 
• P(W│R) = P(W∩R)/P(R) = 1/4/(1/2) = 1/2. 

 
 
Corollary: 
 

 A priori beliefs may influence decisions 
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Example II (modified prisoner's dilemma) 
 
Let there be two games 
 

"I" Second 
C D 

First 
C (-5,-5) (-1,-10) 
D (-10,-1) (0,-2) 

 
and 
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Example II (cont.) 
 

"II" Second 
C D 

First 
C (-5,-11) (-1,-10) 
D (-10,-7) (0,-2) 

 
The difference between "I" and "II" is in payoffs for the 
Second player in the "C" strategy. They read -11 or -7 
instead of -5 or -1 (they are lowered by 6 in both 
cases). 
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Example II (cont.) 
 
In other words, the difference between "I" and "II" is in 
the type of the Second player. The First player does 
not know what is the type of the Second player, but 
has certain beliefs. Namely, the first player believes 
that the game is of the "I" type with probability μ, or of 
the type "II" with probability 1-μ. The Second player 
knows his/her type. 
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Example II (cont.) 
 
If the game is of the type "I" then the strictly dominant 
strategy of the Second player is C, but it is D, if the 
game is of the type "II". Thus the First player – who 
believes that the game is of the "I" type with 
probability μ – should choose C if 

-10μ+0(1-μ)<-5μ-(1-μ), 
or – alternatively – choose D if 

-10μ+0(1-μ)>-5μ-(1-μ); 
if the equality holds, the First player is indifferent 
between choosing C and D. 
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Example II (cont.) 
 
Thus the solution (the best strategy) for the First 
player is C if μ>1/6, and D if μ<1/6. 
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(D.23) 

A Bayesian non-zero sum two-person game is a 
game where payoffs Pij(θP) and Dij(θD) depend on 
realization of random variables θP and θD. It is 
assumed that: (1) distributions of θP and θD are 
known to both players; and (2) realization of θP is 
known to the First player only, and of θD – to the 
Second one only. 
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Note 

 

In the example it was assumed that θP had a 
degenerate distribution that is Pij values were 
known with certainty. At the same time, θD had a 
two-point distribution such that DCC=-11 and 
DDC=-7 with the probability of μ, and DCC=-5 and 
DDC=-1 with the probability of 1-μ. 
 

DCD=-10, and DDD=-2 for any realization of the 
random variable θD. 
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Note 

Definition D.23 can be generalized so as to apply 
to n-person games 

 
(D.24) 

In a Bayesian game D.23, a (pure) strategy 
(decision rule) for the First player is SP(θP) and for 
the Second player – SD(θD) with payoffs 

EθPSP(θP)SD(θD)(θP) and EθDSP(θP)SD(θD)(θD), 
where Eθ is the expected value given the 

distribution of θP and θD, SP{1,...,m} and 

SD{1,...,n} 
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(D.25) 

In a Bayesian game D.23, a (pure strategy) 
Bayesian Nash equilibrium is a pair (SP(θP),SD(θD)) 
of D.24 decision rules such that for any other 
strategies S'P(θP),S'D(θD): 

EθPSP(θP)SD(θD)(θP) ≥ EθPS'P(θP)SD(θD)(θP) 
and 

EθDSP(θP)SD(θD)(θD) ≥ EθDSP(θP)S'D(θD)(θD) 
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Note 

In the example above the Bayesian Nash 
equilibrium is a pair of strategies (SP(θP),SD(θD)) 
where SP(θP)=SP=(C if μ>1/6, D if μ<1/6), and 
SD(θD)=(C if the realization of θD is type "I", D if the 
realization of θD is type "II"). Both players know that 
the distribution of θP is degenerate (there is only 
one realization of θP), and the distribution of θD has 
two values (attained with probabilities μ and 1-μ). 
The First player does not know the realization of 
θD, but the Second one does. 
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Questions: 
 
Q-6 In a game with incomplete information (defined as a Bayesian game) 
[a] players do not know their preferences with certainty 
[b] players know their own payoffs resulting from strategies applied (subject to others' 

strategies applied) 
[c] players always know the others' payoffs resulting from others' strategies applied 
[d] incompleteness of information refers to the fact players cannot perfectly predict payoffs 

resulting from their strategies 
[e] none of the above 
 

Exercises: 
 
E-6 Please calculate a Bayesian Nash equilibrium for the game defined like in the example, but 
with the following payoff matrices: 
 

"I" Second 

C D 

First 
C (-5,-5) (-1,-10) 

D (-8,-1) (0,-2) 

 

 

"II" Second 

C D 

First 
C (-5,-11) (-1,-10) 

D (-8,-7) (0,-2) 

 



GT-7-1 

 

Mechanism design 
 

 
Leonid Hurwicz 
(1917-2008) was 
awarded Nobel Prize 
in economics in 2007 
for his role in 
Mechanism Design 
(among other things) 
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'Mechanism design' = 
 
Constructing a game which helps to overcome 
asymmetric information 
 
Asymmetric information 

The buyer has less information about the 
commodity than the seller or vice versa; acquiring 
information is possible, but costly. 
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Incentive compatibility = motivating for efficiency in a 

principal-agent setting 
 
Model 

• x – employee's effort 

• y=f(x) – product (we assume that its price is 
equal to 1) 

• s(y) or s(x) – employee's salary 

• c(x) – cost born by the employee 

• u0 – employee's aspiration level: s(f(x))-c(x)  u0 
(participation constraint) 
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(T.13) 
Incentive compatibility constraint is: 

s(f(x*))-c(x*)  s(f(x))-c(x) for all x, where 

• x* maximizes f(x)-s(f(x)), i.e. f(x)-c(x)-u0 that is 
(by conventional assumptions): 

• MP(x*) = MC(x*) 
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Proof: 

The incentive compatibility constraint means that x* 
maximizes the expression s(f(x))-c(x), i.e. the net 
benefit for the agent. The theorem (first bullet) 
states that the same x* maximizes f(x)-s(f(x)), i.e. 
the net benefit for the principal. By the rationality of 
the principal, s(f(x))=c(x)+u0 (the principal should 
offer the employee exactly what is expected). The 
expression f(x)-c(x)-u0 is maximized (under the 
concavity assumption) for x* such that f'(x*)=c'(x*) 
(the second bullet). 
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Corollary 

Incentive compatibility constraint is satisfied if the 
employee is a so-called residual claimant (i.e. has 
the right to get the entire marginal product of his or 
her effort when it is close to x*) 
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Examples (of incentive-compatible contracts) 

• Rental payment, R: s(f(x)) = f(x)-R, where R is 
derived from the participation constraint: f(x*)-c(x*)-
R = u0 

• Hourly (daily) salary rate w plus flat rate K so that: 
s(x) = wx+K, where w=MP(x*), and K is derived 
from the participation constraint: wx+K-c(x) = u0 

• Threshold condition (take-it-or-leave-it), payment 

B, if xx* (alternatively: if yf(x*)): the amount B is 
calculated from the participation constraint: B-c(x*) 

= u0 (assuming that BMP(x*)); otherwise the 
agent gets nothing 
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Example (of an incentive-incompatible contract) 
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Note 

The principal-agent approach can be extended to 
situations with many agents. The incentive 
compatibility condition should 

• integrate interests of the principal and agents; 
and 

• reveal information about agents' preferences 
(thus reducing the information asymmetry) 
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Example I: Judgement of Solomon 
 

Two women quarrelled about who was the mother of a 
baby. Each of them knew the truth, but nobody else 
did. Solomon was to judge. He designed a game. 
Each woman was to say 'Yes' or 'No' to his proposal to 
cut the baby in two. The payoff matrix in this game 
would be: 

 

 Second 
Y N 

First 
Y (-100,1) (-100,0) 
N (0,1) (0,0) 
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Example I (cont.): 

 
Solomon assumed that the real mother would say 
N, and the fake one would say Y. Based on the 
outcome (N,Y) he identified the First as the real 
mother thus solving his objective which was to 
make a fair judgement. The trick can be considered 
a successful implementation of 'mechanism 
design'. Of course, if the game were to be played 
repeatedly, its 'payoffs' would probably change. 
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Examples II: auctions 
 

The principal has an object for sale. It can be 
purchased by either of two agents which value the 
object v1 and v2, respectively. Each valuation is known 
only to the agent who has it. Nevertheless the principal 
and both agents know the distributions of both values 
treated as random variables: θ1 for the first valuation 
and θ2 – for the second. Agents are supposed to 
indicate their valuations as sealed bids s1 and s2 
(which do not have to coincide with v1 and v2). The 
object goes to the agent who offered the higher bid. 
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If both bidders offer the same bid then the winner is 
selected randomly with probabilities 1/2 and 1/2. 
Auctions vary with respect to what is the amount 
paid by the winner. 
 
1. First-Price Auction 

The winner pays the amount from his/her own 
bid 

 
2. Second-Price Auction 

The winner pays the amount from the loser's bid 
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Types of auctions: 
 

• 'Sealed bid' (our examples) 

• Descending 

• Ascending 
 
Types vary in terms of information revealed (e.g. 
ascending reveals more information than 
descending) 
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(T.14) 

Let us assume that θ1 and θ2 have the same 
distributions. In both variants of auctions the 
truthful revelation of preferences makes a Nash 
equilibrium in the 'bidding game' (the payoff of the 
loser is 0, and the payoff of the winner is vi-si in the 
first-price auction or vi-s-i in the second-price 
auction) 
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Proof: 

Let us consider the first-price auction first. The 
winner pays si, and gets the net benefit vi-si. If si>vi 
then the net benefit would be negative and the 
winner would have a motivation to be the loser rather 
than the winner. If si<vi then the winner risks loosing 
the auction and hence – si makes the preferred bid. 
Now let us consider the second-price auction. The 
motivation for the winner not to overstate the bid is 
even higher than before. A likely motivation to 
understate in order to pay less disappears, because 
the winner pays the bid of loser. 
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(T.15) (Revenue Equivalence Theorem) 

In both types of auctions the expected revenue of 
the principal (who organizes an auction) is the 
same. 
 

Proof: 
The seller receives si of the winner (in the first-price 
auction) or si of the loser (in the second-price 
auction). By T.14, bidders indicate their true 
valuations (i.e. si=vi, for i=1,2). As vi are sampled 
from the same distributions, then Ev1=Ev2. 
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(T.16) (Inefficiency Theorem) 

Let us assume that θ1 and θ2 have strictly positive 
distributions on intervals that overlap at least 
partially. Neither of the auctions can – in general – 
provide an outcome that satisfies three conditions: 

• individual rationality, 

• incentive compatibility, and 

• budget balance (any payoffs for the principal 
need to be financed from agents' payments) 

(difficult to prove) 



GT-7-19 

 
Questions: 
 
Q-7 In the second-price auction with more than two agents 
[a] there are at least two winners 
[b] the winner always pays less than what he or she stated in the sealed bid 
[c] the losers have incentives to overstate their valuations 
[d] on average, the principal receives less than in the first-price auction 
[e] none of the above 
 

Exercises: 
 
E-7 A craftsman leases a machine from an entrepreneur for a fixed rental payment R. The 
craftsman sells products of the machine in a competitive market at the price of 1. Production 
depends on the amount of labour L devoted to the production process according to the formula 
f(L) = 40 L1/2. The cost of labour is 0.5. The craftsman would not accept a lease unless his net 
revenues from the sales (i.e. after the cost of labour and rent have been paid) is at least 300. 
What a rent R should be charged by the entrepreneur if the contract was to be accepted and 
incentive compatible? 
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Players do not move simultaneously, and 
they remember all their previous moves 
 
(D.26) Extensive Form Game 
 

ΓE = [X, A, n, p, α, H, H, ι, ρ, u], where: 

 
1. A finite set of nodes X, a finite set of possible 

actions A, and a finite set of players {1,...,n} 



GT-8-2 

 

2. A function p: X → X{} specifying a single 

immediate predecessor of each node x; for 

every xX p(x) is non-empty except for one, 

designated as the initial node, x0. The 
immediate successor nodes of x are thus 
s(x)=p-1(x). All predecessors and all successors 
of x can be found by iterating operations p and 
s. It is assumed that for any x and for any 

k=1,2,... p(x)∩sk(x)= (if sk(x) is defined). The 

set of terminal nodes T={xX: s(x)=}. All other 

nodes (X\T) are called decision nodes. 
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3. A function α: X\{x0} → A giving the action that 

leads to any non-initial node x from its 
immediate predecessor p(x) and satisfying the 
condition that: 

if x',x"s(x) and x'≠x", then α(x')≠α(x"). 
The set of choices available at decision node 
x is 

c(x) = {aA: a=α(x') for some x's(x)} 
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4. A family of information sets H and a function 

H:X → H assigning each decision node to an 

information set H(x)H. Thus, the information 

sets in H form a partition of X. It is required that 

all decision nodes assigned to the same 
information set have the same choices 
available, i.e.: 

H(x)=H(x')  c(x)=c(x'). 
Hence choices available at information set H 
can be defined as 

C(H) = {aA: ac(x) for xH} 
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5. A function ι:H → {0,1,...,n} assigning each 

information set in H to a player (or to nature 

formally identified as the player 0), who moves 
at the decision nodes in that set. We can define 
the family of player's i information sets as 

Hi={HH: i=ι(H)} 

 

6. A function ρ: H0A → [0,1] assigning 

probabilities to actions at information sets where 

nature moves and satisfying ρ(H,a)=0 if aC(H), 

and ∑aC(H)ρ(H,a)=1 for all HH0 
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7. A family of payoff functions u=(u1,...,un) 

assigning utilities to the players for each 

terminal node that can be reached, ui:T → . In 
order to be consistent with the theory of 
expected utility, values of the functions ui should 
be interpreted as Bernoulli utilities. 
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Example: Tic Tac Toe (classic) 
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Example: Tic Tac Toe (mathematical) 
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Example 
 

Matching pennies 
One player chooses Heads or Tails. The other one 
independently (perhaps simultaneously) chooses 
Heads or Tails as well. They disclose their 
choices. 
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Example (cont.) 
 

In case there is HH or TT, the second pays 1 to 
the first; otherwise the first pays 1 to the second. 
Independence (perhaps simultaneity) of both 
choices is reflected by the fact that the nodes 
where the second player makes the choice belong 
to the same information set. In the diagram ('game 
tree') this is reflected by the dotted line. 
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(D.27) 

Let Hi denote the family of information sets of the 

player i, A – set of possible actions, and C(H)A – 

the set of actions available at information set H. A 
strategy for the player i is a function si: Hi → A 

such that si(H)C(H) for all HHi 
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(T.17) 

For every extensive form game (D.26) there is a 
unique normal form game (D.20), but not vice 
versa (i.e. the same normal form game may 
correspond to several extensive form games) 

Proof: 
The payoff matrix is defined by payments taken 
from the terminal nodes. 'Paths' leading to the 
terminal nodes define strategies of the players. 
The not 'vice versa' part is implied by the fact that 
the same outcome can be reached by applying the 
same strategies although in a different sequence. 
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Example 

The 'Matching pennies' game depicted in the tree 
above corresponds to the following payoff matrix: 
 

 Second 
H T 

First 
H (1,-1) (-1,1) 
T (-1,1) (1,-1) 
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(D.28) Sequential rationality principle 

Each player's strategy should contain actions that 
are optimal for every node (taking into account 
other players' strategies) 

 
(D.29) Finite game with perfect information 

Every information set contains only one node and 
the number of nodes is finite 
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(T.18) Backward induction 

Sequential rationality principle is satisfied if an optimum 
action for p(x) is determined once an optimum action for x 
is determined (i.e. anticipating an optimum solution at x) 
 

Proof: 
For finite games with perfect information backward 
induction boils down to determining outcomes for each 
terminal nodes x, determining optimum actions for 
preceding nodes p(x), assigning them payoffs that result 
from these optimum actions, and eliminating remaining 
strategies. This procedure is then iterated for earlier 
nodes p(p(x)) and so on, until all the nodes are 
exhausted. 
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Example 
 
The extensive form game 
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Example (cont.) 
 
By applying the sequential rationality principle the 
game can be reduced to 
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Example (cont.) 
 
By applying it once again, the game reduces further 
to 

 
 

By looking at the payoffs, the first player chooses R. 
Hence the outcome of the game can be predicted as 
[5,4,1]. 
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Example (cont.) 
 
Strategies identified by the sequential rationality 
principle (and backward induction) are: 
 

s1 = R, 
 

s2 = A if '1 plays R', 
 

s3 = D if '1 plays L' or if '1 plays R and 2 plays A', 
 

The Nash equilibrium is (R,A,D) 
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(T.19) Zermelo Theorem 
 

Every finite game with perfect information ΓE has a 
Nash equilibrium in pure strategies which can be 
found using backward induction. Moreover if none 
of the players has identical payoffs in two different 
terminal nodes, this is the only Nash equilibrium 
that can be found in this way. 

(easy to prove) 
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Questions: 
 
Q-8 A game in an extensive form (D.26) 
[a] captures not only outcomes but also ways the players followed in order to achieve them 
[b] requires that in a successor node the player moves who did not move in the predecessor 

node 
[c] does not contain information sets consisting of an odd number of nodes 
[d] may have nodes that can be reached by more than one action 
[e] none of the above 
 

Exercises: 
 
E-8 Discuss the Zermelo theorem without the assumption of the lack of identical payoffs. What 
happens if in two terminal nodes x1 and x2 there are identical payoffs for the player who does 
not move in the node p(x1)=p(x2)? 
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Players do not move simultaneously, and 
they remember all their previous moves 
(cont.) 
 
Subgame perfection 
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(D.30) 

Subgame of an extensive form game ΓE – a subset 
satisfying the following two conditions: 
1. It starts with an information set consisting of a 

single decision node x, contains all subsequent 
nodes, s(x), s(s(x)) and so on, and does not 
contain other nodes; 

2. If the node x is in the subgame then every 

x'H(x) is in it as well (i.e. a subgame does not 
contain 'incomplete' information sets). 
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(T.20) 

The entire game ΓE is also a subgame 
(easy to prove) 
 
(T.21) 

Every decision node in a finite game with perfect 
information can 'start' a subgame 

(easy to prove) 
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Example I 
 
A market is served by one firm called Incumbent (I). 
Another firm (F) contemplates entering the market. It 
has two strategies: Enter (E) and Do Not Enter (D). If 
it chooses D, the payoffs are [0,4] (its payoff is 0, and 
the payoff of the Incumbent is – as before – 4). If it 
chooses E, the two firms will play a duopolistic game 
which boils down either to attacking (A) e.g. by a 
price war or to cooperating (C), e.g. à la Cournot or 
Stackelberg (or by sharing the market). If both attack 
then the payoffs are [-3,-1], if they cooperate then 
they are [3,1]. 
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Example I (cont.) 
 

If I attacks and F cooperates it is [-2,-1], and if I 
cooperates and F attacks it is [1,-2]. The story can be 
reflected by a game ΓE defined by the tree: 
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Example I (cont.) 
 
If F chooses E, then I has two strategies: A and C. 
Choosing its own strategy, F does not know what 
strategy has been chosen by I. This is reflected by 
the two nodes where F moves belonging to the same 
information set (the two nodes are linked by a dotted 
line). The game ΓE has two subgames: the entire 
game and, say, ΓO the oligopolistic rivalry part 
following the decision E taken by F. 
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Example I (cont.) 
 
By T.21, the number of subgames is the difference 
between the number of non-terminal nodes (here 4) 
and the number of nodes 'hidden' in non-single node 
information sets (here 2). Hence the number of 
subgames is 2. Since by T.20 ΓE is also its subgame, 
then ΓO is the only other subgame. 
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Example I (cont.) 
 
The game ΓE has the following strategic (normal) 
form ΓN: 

 Incumbent (I) 
C if F 
enters 

A if F 
enters 

Entering 
Firm (F) 

D&C 0,4 0,4 
D&A 0,4 0,4 
E&C 3,1 -2,-1 
E&A 1,-2 -3,-1 
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Example I (cont.) 
 
This strategic-form game has three Nash equilibria 
(D&C,A), (D&A,A), and (E&C,C) with payoffs (0,4), 
(0,4), and (3,1), respectively. The first two do not 
satisfy the sequential rationality principle (I's threat 
that it will attack if F enters is not credible). 
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Example I (cont.) 
 
The subgame ΓO has the following strategic form 
(payoff matrix): 
 

 Incumbent (I) 
C A 

Entering 
Firm (F) 

C 3,1 -2,-1 
A 1,-2 -3,-1 

 
The only Nash equilibrium in this subgame is (C,C). 
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(D.31) 

A strategy profile s=(s1,...,sn) in an n-person game 
ΓE induces a Nash equilibrium in a subgame of this 
game, if actions defined by s for information sets 
of this subgame (understood as a separate game) 
make a Nash equilibrium in it 

 
(D.32) A strategy profile s=(s1,...,sn) in an n-person 

game ΓE is called Subgame Perfect Nash 
Equilibrium, SPNE, if it induces a Nash equilibrium 
in its every subgame 
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(T.22) 

Every finite game with full information ΓE has an 
SPNE in pure strategies. Moreover, if none of the 
players has identical payoffs in two different 
terminal nodes, this is the only SPNE 

(easy to prove) 
 
Corollary (from D.32, not T.22): 

In the example I above (E&C,C) is an SPNE. 
 
Warning: 

Chess satisfies the assumptions of T.22 
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Note: 

Neither of the Nash equilibria that were not SPNEs 
in the example I above seemed realistic, since the 
threat of choosing A by I (if F enters) was not 
credible. The potential entrant may suspect that 
when confronted with its presence in the market – 
despite threats – the incumbent will cooperate. 
Thus such an entry deterrence strategy of the 
incumbent is not effective. 



GT-9-14 

 
Note: 

To be credible, a threat must include a decision 
that will be taken irrespectively of the 'sequential 
rationality principle'. This is called a pre-
commitment. Examples of pre-commitment include: 
(in military planning) automatic destruction of one's 
own infrastructure in the case of attack, and (in 
economics) lack of possibility of changing a 
business decision before a certain date. 
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Example II (Centipede game) 
 
This 2-person game lasts 2k periods (where 
k=1,2,3,...), it has 2k decision nodes, and 2k+1 
terminal nodes. The players move in turns, starting 
with the player number 1. In every node either of the 
two decisions can be taken: Stop (S) or Continue (C). 
If the game is stopped at node i=1,2,3,...,2k then the 
payoffs are: P(i)=i-(1+(-1)i), D(1)=0, and for i>1 D(i)=i-
(1-(-1)i). If the game is not stopped by any player at 
any node, it terminates with the payoffs P(2k)=2k, and 
D(2k)=2k-1. 
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Example II (cont.) 
 
For k=4 the game is reflected by the following tree 
(the name refers to the shape of the tree): 
 

 



GT-9-17 

 
Example II (cont.) 
 
At any stage (node) each player receives a higher payoff 
if he/she stops the game than if the game is stopped by 
the other player in the next node (stage). By the 
sequential rationality principle, player number 2 is better 
off if he/she stops the game in its ultimate (2kth) decision 
node. Knowing this, player number 1 has an incentive to 
stop the game in its penultimate ((2k-1)th) decision node. 
Knowing this, player number 2 has an incentive to stop 
the game earlier, i.e. in the (2k-2)th node, and so on. 
Therefore by the sequential rationality principle, the game 
should be stopped in its first node. 
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Example II (cont.) 
 
Experiments do not confirm the outcome predicted by 
the sequential rationality principle in this case. Hence 
in real life people's behaviour is more complicated 
than some game theoretic models assume. 
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Questions: 
 
Q-9 The concept of a Subgame Perfect Nash Equilibrium in finite 2-person games 
[a] requires all subgames to contain only one-node information sets 
[b] eliminates Nash equilibria which violate the sequential rationality principle 
[c] cannot be extended to n-person games (where n>2) 
[d] in the market entry-deterrence game allows for strategies involving non-credible threats 
[e] none of the above 
 

Exercises: 
 
E-9 In the entry-deterrence game described in ΓN above (Example I), please modify the payoffs 
understood as profits so as to account for the following market conditions. The market price is 
p=a-by, where the supply y comes from the incumbent (I) or the incumbent and the entrant (F). 
Both firms have identical cost functions and constant returns to scale, i.e. 
MCI=MCF=ACI=ACF=c=const. Cooperation means setting the supply level as in the Cournot 
model. Attack means setting individual supplies at the level which maximizes profit for a single 
firm (as if it were a monopolist). 
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Repeated games I 
 
Example I (Sequential Bertrand model) 

A duopoly plays a Bertrand game sequentially. 
After each period the rivals j=1,2 can 
(simultaneously) announce new prices. It is 
assumed that they maximize the Present Value 
(with the discount rate ρ>0) of their profits: 

j0+j1/(1+ρ)+j2/(1+ρ)2+j3/(1+ρ)3+... 
The game can be finite (if firms play it T times) or 
infinite. 
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Discounting (recollection) 

Discount rate () lets compare money amounts that 
belong to different time periods 
 

Xt = X0(1+r), or X0 = Xt/(1+r), where 
 

Xt is the present value (in year t) of the value X0 
observed in year 0; or X0 is the present value (in year 
0) of the value Xt observed in year t. 
 
Present value of quantities X0, X1, X2, …, XT: 
 

PV = X0/(1+)0+X1/(1+)1+X2/(1+)2+...+XT/(1+)T. 
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(T.23) 

In the sequential Bertrand model, if the game is 
finite, then there is only one SPNE; it consists of 
Nash strategies from a single Bertrand model, i.e. 
(c,c), where c=AC1=AC2=MC1=MC2=const (as in 
the standard Bertrand duopoly model) 

Proof: 
No price p<c can be sustained since it implies 
losses. Yet no price p>c can be sustained since at 
least one firm has a motivation to offer a price 

(c,p) in order to undercut the rival's price, get all 
the clients and increase the profit. 
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(D.33) Nash-Bertrand reversion strategy 

In the sequential Bertrand model we define for t>1 
Ht-1={(p11,p21),(p12,p22),(p13,p23),...,(p1t-1,p2t-1)} 

i.e. a history of strategies applied. In the tth stage 
the rivals choose pjt(Ht-1)=pM if t=1 or Ht-1 consists 
of (pM,pM) only. Otherwise pjt(Ht-1)=c. pM is the 
monopolistic price, i.e. the price giving the two 
firms the maximum profit available jointly for the 
suppliers. In the standard model (two identical firms 
as in T.23, linear demand curve p=a-by) the 
monopolistic price pM=(a+c)/2. The joint supply is 
yM=(a-c)/(2b), and the joint profit is πM=(a-c)2/(4b). 
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(T.24) 

In the sequential Bertrand model, if the game is 
infinite, then Nash-Bertrand reversion strategy is 

SPNE if and only if ρ1 
(easy to prove) 
 
(T.25) 

In the sequential Bertrand model, if the game is 

infinite and ρ1, then each fixed and common (for 

both players) selection of the price p[c,pM] backed 
by the Nash-Bertrand reversion strategy is an SPNE. 

(easy to prove) 
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(T.26) 

In the sequential Bertrand model, if the game is 
infinite and ρ>1, then the only SPNE consists of 
p=c to be selected by both players in each stage. 

(easy to prove) 
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Example II (Sequential Cournot model) 

A duopoly plays a Cournot game sequentially. After 
each period the rivals j=1,2 can (simultaneously) 
announce new supplies. It is assumed that they 
maximize the Present Value (with the discount rate 
ρ>0) of their profits: 

j0+j1/(1+ρ)+j2/(1+ρ)2+j3/(1+ρ)3+... 
The game can be finite (if firms play it T times) or 
infinite. 
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(T.27) 

In the sequential Cournot model, if the game is 
finite, then there is only one SPNE; it consists of 
Nash strategies from a single Cournot model, i.e. 
(yC,yC), where in the standard Cournot duopoly 
(c=AC1=AC2=MC1=MC2=const) with a linear 
demand curve p=a-by, yC=y1=y2=(a-c)/3b. The total 
supply is thus y=2(a-c)/(3b), the price pC=(a-2c)/3, 
and the joint profit πC=(a-c)2/(9b). 

(easy to prove) 
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(D.34) Nash-Cournot reversion strategy 

In the sequential Cournot model we define for t>1 
Ht-1={(y11,y21),(y12,y22),(y13,y23),...,(y1t-1,y2t-1)} 

i.e. a history of strategies applied. In the tth stage the 
rivals choose yjt(Ht-1)=yM/2if t=1 or Ht-1 consists of 
(yM/2,yM/2) only. Otherwise pjt(Ht-1)=yC. yM/2 is the half 
of the monopolistic supply, i.e. the (joint) supply giving 
the two firms the maximum profit available jointly for 
the suppliers. In the standard model (two identical 
firms as in T.27, linear demand curve p=a-by) the 
monopolistic joint supply is yM=(a-c)/(2b), and the 
resulting price pM=(a+c)/2. The joint profit is then 
πM=(a-c)2/(4b). 
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(T.28) 

In the sequential Cournot model, if the game is 
infinite, then Nash-Cournot reversion strategy is 

SPNE if ρ8/9 
(difficult to prove) 
 
(T.29) 

In the sequential Cournot model, if the game is 
infinite and ρ>8/9, then the only SPNE consists of 
y=yC to be selected by both players in each stage. 

(difficult to prove) 
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'Folk theorems' – useful theorems that everybody 
relies on, but so trivial that nobody bothers to prove 
and/or authorize with one's name. Several game 
theory results are nick-named 'folk theorems'. 
 
Folk theorem (example) 

In a finite game, by backward induction one can 
prove that the only SPNE consists of non-
cooperative decisions 
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Note 

As the difference between an infinite game and a 
finite one with a large number of stages is difficult 
to appreciate in an experimental setting, while the 
consequences are drastically different (as evident 
by comparing the Folk Theorem above with 
previous theorems), economists introduce the 
concept of finite games of unknown duration. 
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Note 

In examples I and II, 'Nash reversion strategies' 
involved 'punishing' the non-cooperating rival by 
switching to a Nash (non-cooperative) solution for 
ever. An alternative concept is to 'punish' the non-
cooperating rival only once by choosing a Nash 
solution and then moving back to a cooperative 
one from the next stage on. There are empirical 
findings which indicate that this other 'Nash 
reversion strategy' provides higher payoffs for the 
players. 



GT-10-14 

 
Tit-For-Tat 
 

• Robert Axelrod tournament 
 

• Anatol Rapoport: 
'Tit for tat' = a punishment for the non-
cooperative behaviour, but not for ever – only 
once.  
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Note 

In both examples, there is no collusion between the 
rivals. Nevertheless their choices are similar and 
may create an impression that they colluded. That 
is why this type of behaviour is sometimes referred 
to as 'tacit collusion'. 
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Questions: 
 
Q-10 The 'Nash reversion strategy' (as defined in D.33 or D34) 
[a] means that rivals agree to play their respective Nash strategies 
[b] means that rivals are forced to cooperate by a threat that non-cooperation would be 
 punished by slipping into a Nash equilibrium 
[c] implies that rivals 'revert' strategies by playing each other roles 
[d] applies to finite games only 
[e] none of the above 
 

Exercises: 
 
E-10 Please design an experiment to let agents avoid the non-cooperative behaviour implicit in 
the Folk Theorem for any finite game. Provide a detailed explanation of motivations the agents 
may or may not have to cooperate during the experiment. 
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Repeated games II 
 
Refining the concept of Nash equilibrium in a dynamic 
setting; 'bygone is bygone' 
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(D.35) Pareto domination 

 
A pair of strategies (i1,j1) is Pareto-dominated by 
(i2,j2), if Pi2j2≥Pi1j1 and Di2j2≥Di1j1. In other words, if 

players are free to choose and rational they should 
avoid playing Pareto-dominated strategies. 
 

(D.36) Pareto perfection (informal) 
 
'Players are not likely to choose strategies that are 
Pareto-dominated, irrespective of previous choices' 
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Note 

Pareto perfection is also called 'renegotiation 
proofness', as – irrespective of previous (non-
binding) agreements – players are unlikely to stick 
to their threats (such as "Nash reversion strategy") 
if a Pareto superior option is available at a given 
stage 
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(D.37) Markov Perfection (informal) 

 
In a repeated game, payoffs depend only on a 
state variable (not on the history of specific 
strategies) 
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Example I (Extraction of a common resource) 

Two players, 1 and 2, exploit the stock of a 
common resource Kt≥0. In each period t=1,2,3,... 
they plan how much of the stock to extract at

1, at
2. 

If at
1+at

2<Kt, then their actual extraction quantities 
are st

i=at
i for i=1,2. If at

1+at
2≥Kt then st

i=Kt/2 for 
i=1,2. Their payoffs are πi(st

i) for i=1,2. The stock of 
the resource is Kt+1=f(Kt-st

1-st
2). If the stock is 

depleted completely then it will never be created 
again: f(0)=0. 
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Example I (continued) 

Markov-perfect strategies (s1
1,s1

2), (s2
1,s2

2), 
(s3

1,s3
2), ... depend only on K1, K2, K3, ... and not on 

the history of earlier decisions (of either player). 
Critics say that it would be difficult to find systems 
which comply with this assumption. Perhaps it is 
more realistic to assume that players retain some 
memory of how they behaved in the past. 
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D.38 Trembling-hand-perfect Nash equilibrium 
(THPNE) (almost formal definition) 

 
THPNE is a Nash equilibrium that is robust to small 
perturbations. A strict mathematical definition is 
much more complex and it will not be quoted here. 
Instead an example will be analyzed to explain 
which Nash equilibria are robust enough (are 
THPNE), and which are not. 
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Example II 

In the following game there are two Nash equilibria: 
(U,L) and (D,R). 

 Second 
L R 

First 
U (1,1) (2,0) 
D (0,2) (2,2) 

However, only (U,L) is THPNE, as the following 
argument explains. 
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Example II (continued) 

As (U,L) is a Nash equilibrium, the players are likely 
to choose pure rather than mixed strategies. In other 
words, the First is likely to play U and D with 
probabilities 1 and 0, respectively. Likewise the 
Second is likely to play L and R with probabilities 1 
and 0, respectively. Neither has an incentive to 
unilaterally change the decision. Now let us assume 
that they make mistakes occasionally (their hands 
'tremble'). I.e. let us assume that the First chooses U 
and D with probabilities 1-ε and ε, respectively (if the 
hand does not 'tremble', ε=0). What is the optimum 
mixed strategy of the Second player? 
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Example II (continued) 

If the Second plays L then the expected payoff will 
be 1(1-ε)+2ε=1+ε. If the Second plays R then the 
expected payoff will be 0(1-ε)+2ε=2ε. Thus, for 
small ε, the Second will maximize the expected 
payoff by choosing L with high probability and R 
with low probability. Now let us assume that the 
hands of the Second player tremble, but the First 
one never fails to choose an appropriate strategy. 
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Example II (continued) 

 
Thus, let us assume that the Second player 
chooses L and R with probabilities 1-ε and ε, 
respectively, then the First will maximize payoff by 
preferring U rather than D. Hence (U,L) turns out to 
be a Nash equilibrium robust with respect to such 
perturbations, i.e. a THPNE. 
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Example II (continued) 

Now let us analyze (D,R). Assuming that the First player 
chooses U and D with probabilities ε and 1-ε, 
respectively, the Second will get the expected payoff of 
1ε+2(1-ε)=2-ε (if playing L) or 0ε+2(1-ε)=2-2ε (if playing 
R). Therefore the Second will choose L more frequently. 
By symmetry of payoffs, the First will choose more 
frequently U when the Second plays L and R with 
probabilities ε and 1-ε, respectively (if the hands of the 
Second player tremble, but the First one never fails). 
Either calculation explains that (D,R) is not THPNE. All 
arguments can be made mathematically more precise, 
but this is not required if the concept of THPNE is only 
intuitively defined (as it is in this course). 
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Questions: 
 
Q-11 'Trembling-hand' perfection 
[a] is a method to identify strategies that do not comply with the definition of Nash equilibrium 
[b] applies only to games that do not have Nash equilibria in pure strategies 
[c] assumes that players never fail to choose optimum strategies 
[d] assumes that players care not only for their own outcomes but also for the total payoff 
[e] none of the above 
 

Exercises: 
 
E-11 Consider a common resource game such as in the Example I above with the following 
specifications. Two users exploit a renewable resource whose regeneration rate is given by the so-
called logistical equation: if st

1+st
2<Kt then Kt+1=Kt+gKt(K-Kt)-st

1-st
2, where g,K>0; please note that if 

t=1,2,3,... number consecutive years then: (1) Kt+1=Kt when gKt(K-Kt)=st
1+st

2  (i.e. when total 
extraction is equal to the annual increment ∆Kt=gKt(K-Kt)); (2) the annual increment ∆Kt=0 in two 
cases: for Kt=0 and for Kt=K; the former case simply states that if there is no stock, it will not be 
replenished; the latter lets interpret K as the 'carrying (maximum) capacity'); (3) ∆Kt is largest if 
Kt=K/2. Let us assume further that πi(x)=x for i=1,2 which means that the stock can be sold at a unit 
price and the marginal cost of extraction is zero. Let K0=K/2. If the players choose at

1=at
2=∆Kt/2 then 

they will continue the extraction for ever and every year they will jointly enjoy the largest payoffs 
possible. What are game theoretic predictions for the game? 
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Coalitions and general equilibrium I 
 

• Trivial coalitions in the case of two-person games 

• Edgeworth box used to illustrate pure exchange 
games 
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(D.39) 

Let there be I players {1,...,I} as in D.20. A coalition 

K{1,...,I} improves upon, or blocks, the outcome 
(s*

1,...,s*
I) if there is a set of strategies (s1,...,sI) 

such that for every iK ui(s1,...,sI)>ui(s*
1,...,s*

I). 
 
(D.40) 
The outcome (s*

1,...,s*
I) has the core property, if there 

is no coalition that can improve upon it. The set of 
outcomes that have the core property is called the 
core. 
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Example I 

The 'Prisoner's Dilemma' game given by the 
following payoff matrix 

 

 Second 
C D 

First 
C (-12,-12) (0,-18) 
D (-18,0) (-1,-1) 

 

has an empty core. It can be seen that for every 
outcome (cell in the matrix) at least one player can 
make a coalition (with himself or herself) to improve 
his/her payoff 
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Note 

Definitions D.39 and D.40 can be extended to 
games with infinite number of strategies. 

 
(D.41) 

A coalitional game with transferable payoffs is 
defined as <N,v>, where N is the finite set of 
players, and v is a real function defined over the 

set of all possible coalitions KN. v(K) is called the 
worth of the coalition. v(N) is the worth of the 

game. If x1,...,xn are payoffs then x(K)=∑iKxi is 
called a payoff profile. A payoff profile is feasible if 

x(K)=v(K). By convention, v()=0. 



GT-12-5 

 
(D.42) 

Shapley value of a coalitional game with 
transferable payoffs <N,v> for the player i is: 
 

Shi(N,v) = (1/(cardN)!)∑m(K(π,i),i) 
 
where the summation extends over all 
permutations of the set N. The number m(K(π,i),i) 
is the increase of the sum of payoffs the player i 
'brings' to a coalition K(π,i) consisting of those 
members of the set N who in the permutation π 
precede i. 
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Note 

Elements of Shapley value can be interpreted as 
the threat of leaving made by the player i to a 
coalition he/she is a member of (K) consisting of 
players whose place precedes i: 

(v(K)-v(K\{i}) 
 

The sum of these numbers extends over all 
possible orderings (permutations) of the members 
of N. Thus Shi(N,v) can be also interpreted as an 
expected value the player i is 'entitled to' if other 
players behave rationally. 
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Example II (left and right hand gloves): 
 

 
    1       2        3 
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Example II (cont.) 
 

Ordering 1 2 3 
{1,2,3} 0 0 12 
{1,3,2} 0 0 12 
{2,1,3} 0 0 12 
{2,3,1} 0 0 12 
{3,1,2} 12 0 0 
{3,2,1} 0 12 0 

 12 12 48 
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Example II (cont.) 
 

• Sh1=12/6=2, 

• Sh2=12/6=2, and 

• Sh3=48/6=8. 
 
Sh1 + Sh2 + Sh3= 2+2+8 = 12 
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Example III (capitalist production) 

A capitalist owns a factory and each of w workers 
owns his/her labour only. Without the capitalists 
workers cannot produce anything. Any group of m 

workers (m>0) produce f(m), where f: → is a 
linear function f(m)=mp (note that f(0)=0) with p>0 
interpreted as the marginal and average 
productivity of a worker (the same for any worker). 
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Example III (continued) 

This can be modelled as the following coalitional 

game with transferable payoffs <N,v>. N={c}W, 
where c denotes the capitalist and W – the set of 
workers. The game is worth 

• v(K)=0 if cK, and 

• v(K)=f(card(K∩W)) if cK 
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Example III (continued) 

The core of this game is 

{xcardN: 0≤xi≤p for iW and ∑iNxi=wp}, 
where w is the number of workers participating. 

Its Shapley value is 

• Shc(N,v)=wp/2, and 

• Shi(N,v)=p/2 
Note that the core includes [wp/2,p/2,...,p/2], but it 
also includes the 'competitive' outcome [0,p,...,p]. 
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Example IV (A three-player majority game) 
 

Three players can obtain a payoff of 1; any two of 

them can obtain jointly α[0,1] irrespective of the 
actions of the third; each player alone can obtain 
nothing irrespective of the actions of the remaining 
two. 
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Example IV (continued) 
 

This is a coalitional game with transferable payoffs 
<N,v> where N={1,2,3}, v(N)=1, v(K)=α whenever 
card K =2, and v({i})=0 whenever i=1,2,3. The core 
of this game is the set of all nonnegative payoff 
vectors [x1,x2,x3] such that x(N)=1 and x(K)≥α for 
every two-player coalition. Therefore if α>2/3 the 
core is empty. (Assuming that all three players are 
in coalition (K=N), if one of them gets xi≥1/3 then 
the other two can make a coalition to get jointly at 
least 2/3, i.e. more than before.) 
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Example V (Miners game) 
 

I>2 miners discovered heavy identical pieces of a 
valuable mineral. Each piece can be carried out 
(and privately sold for the price of 1, e.g. ½ for 
each of the carrying miner) by two miners. Will they 
agree on how to handle this discovery? 
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Example V (continued) 
 

The problem can be modelled as a coalitional 
game with transferable payoffs <N,v>, where 

• v(K)=(card K)/2 if card K is even; and 

• v(K)=((card K)-1) if card K is odd. 
If I≥4 and even then the core consists of a single 

payoff profile [1/2,...,1/2]. 
If I≥3 and odd then the core is empty. 
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Questions: 
 
Q-12 The 'Prisoner's Dilemma' game (Example I) has an empty core 
[a] because the players do not cooperate with each other 
[b] because at least one player can always improve his/her payoff 
[c] because both players understand that the game will not be repeated 
[d] because the players will lose even if they cooperate 
[e] none of the above 
 

Exercises: 
 

E-12 Let us assume that three-players majority game is played with =4/5 (example IV above). 
The payoff profile is not symmetric: [1/4,1/4,1/2]. One of the players who gets 1/4 approaches 
the other one who gets 1/4 suggesting that once they get rid of the third player (who gets 1/2) 

they will get =4/5 to be split into halves (2/5 each), so that both of them can be better off. Does 
this offer make sense? 
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Coalitions and general equilibrium II 
 
Note: Pure exchange economy 
 

A so-called pure exchange economy can be 
considered a game. In what follows we will confine 
to the case where two consumers hold two goods 
and contemplate whether to exchange some units 
of one good for some units of the other one. The 
players consider only allocations which do not 
make them worse off. 
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Note (continued) 
 

• Endowment (initial allocation) of the ith consumer: 
ωi1, ωi2 

• Total endowment of the jth commodity: 
ωj = ω1j+ω2j 

• Gross demand (final allocation) of the ith 
consumer: xi1,xi2 

• Total demand for the jth commodity: 
xj = x1j+x2j 

• Excess demand of the ith consumer: 
xi1−ωi1,xi2−ωi2 
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Note: Edgeworth box 
 

A graphical analysis of feasible allocations in a 
pure exchange economy (superposition of two 
coordinate systems for the analysis of a 
consumer's choice: the width of the rectangle = 
ω11+ω21, the height of the rectangle = ω12+ω22; the 
second system is rotated by 180o) 
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Edgeworth box idea 
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Interpretation of the box. 

• Good number 1 = apples, 

• Good number 2 = oranges. 

• The first person (A) brought 8 apples and 2 
oranges, 

• The second person (B, whose axes were rotated 
by 180o) brought 2 apples and 3 oranges. 

• They have 10 apples and 5 oranges jointly. 
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Note: Edgeworth box (continued) 
 

Pictures illustrate the following situation. Indifference 
curves (i.e. the sets of points yielding the same 

utility) of A, IA() are given by the formula x2A=/x1A, 

while indifference curves of B, IB() are given by 

x2B=/x1B (,>0 – parameters); additionally, we 
assume that the total quantity of the first good is 10, 
while that of the second – 5. Moreover, the diagram 
corresponds to the initial allocation of the first good 
8:2, while of the second one – 2:3 (point X0). There 
are two indifference curves containing this point: 
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Note: Edgeworth box (continued) 

 

x2A=16/x1A (=16) and x2B=6/x1B (=6). A would 
prefer to be on a higher indifference curve, say, in 

(9,3), i.e. on the curve x2A=27/x1A (=27). At the 
same time, B would like to have more of everything, 
i.e. to be in, say, (3,4), i.e. on the curve x2B=12/x1B 

(=12). It is impossible to satisfy these expectations at 
the same time. One solution which can place both 
agents in a jointly preferred point (one should solve a 
system of simultaneous equations) is: x1A*=6, x2A*=3, 

x1B*=4, x2B*=2, =18, =8, p= p1/p2 =0,5 
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Note: Edgeworth box (continued) 
 

(see the second picture). Agents A and B are on 
IA(18) and IB(8), respectively, and they are better of 
than in X0. One can see from the figure that they 
cannot improve their situations further simultaneously. 
In other words, (6,3) is a Pareto optimum. Equilibrium 
prices which satisfy this solution are multiple, e.g. 
p1=1, p2=2, or p1=7, p2=14, or p1=0,5, p2=1 etc, as 
long as p1/p2=p=0,5. 
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Note: Edgeworth box (continued) 

 
A contract curve is the set of all allocations which are 
Pareto optima and which are preferred by both 
players over their initial allocation. It is depicted as a 
thick line in the following picture. A contract curve in 
an Edgeworth box is a core in a pure exchange 
economy game. 
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GT-13-13 

 
(D.43) 

X* is a Walrasian (competitive) equilibrium in an 
Edgeworth box pure exchange economy if: 

• uA(x*
1A,x*

2A)≥uA(x1A,x2A) for all (x1A,x2A)Bp(X0), 

• uB(x*
1B,x*

2B)≥uB(x1B,x2B) for all (x1B,x2B)Bp(X0), 

• Bp(X0)={(x1A,x2A,x1B,x2B)4: 
p1x1A+p2x2A ≤ p1ω1A+p2ω2A, and 
p1x1B+p2x2B ≤ p1ω1B+p2ω2B} 
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Welfare economics theorems 
 
Two fundamental theorems in welfare economics: 

• They establish a relationship between Pareto 
optima (PO) and Walras equilibria (WE). 

• The first: WEPO, 

• The second: POWE. 

• Almost an equivalence. 
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Welfare economics theorems 
 

PO  WE 
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(T.30) The first fundamental welfare economics 

theorem 
 
In an Edgeworth box pure exchange economy, if 
X* is a Walrasian equilibrium then X* is in the core 
of a corresponding coalitional game with 
transferable payments 
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Proof: 

It is sufficient to demonstrate that no coalition can 
improve upon X*. If exchanges were to be carried 
out at given prices this would have been obvious 
given both inequalities (no improvements are 
possible) and the feasibility condition (each 
consumer can spend not more than he/she obtains 
from selling his/her endowments). But the core 
property is more general. It refers to potential 
coalitions that do not necessarily apply price 
mechanisms. 
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Proof (continued): 

 
Thus let us assume that there is another feasible 
allocation X' which is at least as good as X* for one 
consumer and strictly better for the other one. Then 
p1(x'1A+x'1B)+p2(x'2A+x'2B)>p1(x*

1A+x*
1B)+p2(x*

2A+x*
2B), 

which means that X' must have been too expensive 
to be chosen in equilibrium. However, in a pure 

exchange economy: x'1A+x'1B=x*1A+x*1B=1, and 

x'2A+x'2B=x*2A+x*2B=2. Hence p11+p22>p11+p22 
which is a contradiction. 
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(D.44) 

A value function φi defined for each player in a 
coalitional game with transferable payoffs <N,v> is 
called efficient if ∑φi(N,v)=v(N); i.e. 'no value is 
wasted'. (Summation extends over all the players.) 
 

(D.45) 
A value function φi defined for each player in a 
coalitional game with transferable payoffs <N,v> is 
called symmetric if φi(N,v)=φh(N,v'), where v and v' 
are identical except that the roles of players i and 
h are permuted. 
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(D.46) 

A value function φi defined for each player in 
coalitional games with transferable payoffs <N,v1> 
and <N,v2> is called additive if 

φi(N,v1+v2)= φi(N,v1)+φi(N,v2), where 
<N,v1+v2> is a coalitional game with transfers 
defined through (v1+v2)(K)=v1(K)+v2(K) 
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(D.47) 

A value function φi defined for each player in a 
coalitional game with transferable payoffs <N,v> 
satisfies the dummy axiom if φi(N,v)=0 for a player 
who does not contribute to any coalition, i.e. for 

every coalition K, v(K{i})=v(K). 
 

(T.31) 
A value function φi defined for each player in a 
coalitional game with transferable payoffs <N,v> 
satisfying definitions D.44-D.47 is a Shapley value 

(difficult to prove) 
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Questions: 
 
Q-13 In a pure exchange economy, for any endowment the contract curve is a core of a 

corresponding game, because 
[a] any other allocation gives them (jointly) less goods than it is feasible given their 

endowments 
[b] it is not possible to jointly improve their situation once they are in the contract curve 
[c] every point in the contract curve can be achieved given the initial allocation and the market 

prices 
[d] the players agree to take into account not only their own respective utilities 
[e] none of the above 
 

Exercises: 
 
E-13 Calculate the Walrasian equilibrium (including the price ratio) in a pure exchange economy 
game where the two players have the allocations of the two goods (4,4) and (6,1), respectively, 

and their indifference curves are given by the following hyperboles: x2A=/x1A, and x2B=/x1B, 

respectively (,>0 – parameters). 
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Coalitional games with transferable 
payments: Axiomatic bargaining 
 
Overall assumptions: 
 

1. The coalition consists of all (I) players 
2. All players refer to the same 'starting point' 
3. If no agreement is reached – the 'starting point' 

continues; thus it can be considered a 'threat' 
 
Objective of the analysis: 

Find rules for players' desired behaviour 
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(D.48) 

• U – the set of all possible payoff combinations, 

• UI 

• U is closed and convex 

• U satisfies 'free disposal' property (i.e. if uU, 

and u'≤u then u'U) 
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Note: 

Non-zero two-person games as defined in D.14 do 
not satisfy D.48, because their payoff sets are 
finite. However, later on, D.14 was extended to 
cover infinite payoff sets. As before, elements of U 
can be interpreted as (expected) utilities. 
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(D.49) 

A function f: 2I→I, a rule that assigns a solution 

vector f(U)U to every bargaining problem, is 
called a bargaining solution 
 

(D.50) 
The bargaining solution f is independent of utility 
origins (IUO) if f(U)=f(U'), where 

U'={u'I: uU[u'=(u1+α1,...,uI+αI)]} 

for some α=(α1,...,αI)I. It is understood that in U' 
the 'starting point' u'*=(u*

1+α1,...,u*
I+α1) where u* is 

the 'starting point' in U. 
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(D.51) 

The bargaining solution f is independent of utility 
units (IUU), or invariant to independent changes of 

units, if for any 0<βI, fi(U')=βifi(U) for all i=1,...,I, 

whenever U'={(β1u1,...,βIuI): uU} 
 

(D.52) 
The bargaining solution f satisfies the Pareto 
property (P), or is Paretian, if for every U f(U) is a 

weak Pareto optimum, i.e. there is no uU such 
that ui>fi(U) for every i. 
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(D.53) 
The bargaining solution f is symmetric (S) if 
whenever U is a symmetric set (i.e. U remains 
unaltered under permutations of axes) all the 
coordinates of f(U) are equal (i.e. f1(U)=...=fI(U)) 
 

(D.54) 
The bargaining solution f satisfies individual 
rationality (IR) whenever f(U)≥u* 

 

(D.55) 
The bargaining solution f is independent of irrelevant 

alternatives (IIA) if whenever U'U and f(U)U' it 
follows that f(U')=f(U) 
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Note 

For notational simplicity, it will be assumed from 
now on that u*=0 (justified by D.50 and D.51) 

 
Example I (Egalitarian solution) 

It is also called the Rawlsian solution: fe(U)= 

=(ue,...,ue) where ue=max{min{u1,...,uI}: uU} 
 

Example II (Utilitarian solution) 
fu(U)=(uu

1,...,uu
I) where uu

1+...+uu
I≥u1+...+uI for all 

uU+
I (fu maximizes the sum of utilities) 
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Example III (Nash solution) 

fn(U)=(un
1,...,un

I) where un
1...un

I≥u1...uI for all 

uU∩+
I (fn maximizes the product of utilities). 

Alternatively it can be defined as a maximizer of 
the sum of logarithms of utilities lnu1+...+lnuI. 
 

Example IV (Kalai-Smorodinski solution) 
fk(U)=(uk

1,...,uk
I) where uk

i=δumax
i with 

• umax
i=max{ui: uU∩+

I} and  

• δ=max{λ: λ(umax
1,...,umax

I)U∩+
I} 



GT-14-9 

 
Example V (Nash vs. Kalai-Smorodinsky) 

 

 
Player 2 
L R 

Player 1 
U (0,3) (0,0) 
D (0,0) (6,0) 

 
Two Nash equilibria: (U,L), and (D,R). 

• Nash solution: split 6 equally: 3+3. 

• Kalai-Smorodinsky solution: split 6=4+2. 
δ in the example IV above is equal to 2/3. 
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(T.32) 

The Nash solution is the only bargaining solution 
which satisfies IUO, IUU, P, S, and IIA 

(difficult to prove) 
 

(T.33) 
The Nash solution satisfies IR 

Proof: 
By definition, fn(U)≥0 as a product of non-negative 
numbers. By IUO and IUU 0 can be chosen as the 
'starting point'. 
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Note 
 
High school graduates: 

• A scored 20 in mathematics and 90 in history, 

• B scored 50 in mathematics and 50 in history. 
 

 M H AA GA 
A 20 90 55 42 
B 50 50 50 50 

 

• A better than B according to AA 

• B better than A according to GA 
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Questions: 
 
Q-14 Utilitarian solution to a bargaining problem relies on the assumption that 
[a] all players are characterized by identical utility functions 
[b] players who (as a result of the game) are better off are given priority 
[c] players who (as a result of the game) are worse off are given priority 
[d] no players can improve their situation at the expense of others 
[e] none of the above 
 

Exercises: 
 
E-14 Calculate the egalitarian, utilitarian, Nash, and Kalai-Smorodinski solutions for the 'glove 
game' from E-12 
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Evolutionary game theory 
 
Are Nash equilibria stable? 
 

• Game structure 

• Environment structure 
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Example I (Cournot duopoly) 

• Two producers supply the same market 

• The price is implied by the total supply: 
p=a-b(y1+y2) 

• Both firms have identical cost functions and 
MC1=MC2=AC1=AC2=c=const 

• The first rival makes a quantity decision y1 that 
maximizes its profit expecting that the second 
rival does the same (with respect to y2) 

• Thus they solve two maximization problems: 

• maxy1{(a-b(y1+y2))y1-cy1} 

• maxy2{(a-b(y1+y2))y2-cy2} 
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Example I (continued) 

FOC for these problems are: 

• a-2by1-by2-c=0 

• a-2by2-by1-c=0 

Solving these equations yields 

• y1 = y2 = (a-c)/3b 

• y = 2(a-c)/3b 

• p = (a+2c)/3 

This a 'standard' Cournot-Nash solution 
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Example I (continued) 

Rewriting the FOC one can yield 

• y1=(a-c)/(2b)-y2/2, and 

• y2=(a-c)/(2b)-y1/2 
These are so-called reaction curves, i.e. the best 
response (profit maximizing output) of one player 
given the decision (output) of the other one. To 
simplify calculations from now on, we put specific 
numbers (a=9, b=1, and c=3). Reaction curves are 
thus y1=3-y2/2, and y2=3-y1/2, and the Nash 
equilibrium is (2,2). 
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Example I (continued) 

Let us assume now that players missed the 
equilibrium. For instance, let y1

0=3 (instead of 2). 
Assuming that this choice will be repeated, in the 
second round the rival may wish choose y2

1=3-3/2 
(according to the reaction curve), i.e. y2

1=3/2. If the 
first player expects this choice to be repeated then 
his/her best reaction in the next round will be 
y1

2=3-(3/2)/2=9/4. In yet another round the likely 
supply offered by the second one may be y2

3=3-
(9/4)/2=15/8. Then y1

4=3-(15/8)/2=33/16, y2
5=3-

(33/16)/2=63/32, and so on. 
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Example I (continued) 

It is easy to see that both players are likely to 
approach (2,2), i.e. the Nash equilibrium. The 
example suggests that the Nash equilibrium in the 
Cournot game is stable. Even if the players miss it, 
they are likely to move towards it if they play the 
game repeatedly. 
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Convergence in Cournot model 
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Example II ('Cobweb model') 

The so-called 'cobweb model' refers to a 
competitive market characterized by a demand 
curve p=a-by, and a supply curve p=c+dy 
(a,b,c,d>0, and a>c). Equilibrium quantity is 
y=(a-c)/(b+d), and equilibrium price is 
p=(ad+bc)/(b+d). An additional assumption is that 
adjustments are done in discrete time intervals 
(e.g. years), suppliers react to market prices, but 
the quantity they offer in the next period is not 
flexible (i.e. it corresponds to the previous period 
price rather than to the present one). 



GT-15-9 

 
Example II (continued) 

This can be modelled as a game with one player 
determining the demand and the other one – the 
supply. Assuming that disequilibrium is always 
considered as a bad outcome (if the price is higher 
than expected, suppliers regret that they did not 
offer more; if the price is lower than expected, 
suppliers regret that they did not offer less), its 
Nash equilibrium is when the actual price is equal 
to the expected one. 
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Example II (continued) 

If the equilibrium quantity and price were achieved, 
then yt=(a-c)/(b+d) and pt=(ad+bc)(b+d) for 
t=0,1,2,.... Let us see what happens if the price 
faced by the suppliers was not their expected price. 
To simplify calculations from now on, we put 
specific numbers (a=12, b=2, c=0, d=1). Thus the 
demand curve is p=12-2y, and the supply curve is 
p=y. The equilibrium quantity is y=12/3=4, and the 
equilibrium price is p=12/3=4. 
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Example II (continued) 

Let us assume that for whatever reason p0=5. 
Reacting to this price the supply will be y1=5. With 
this quantity offered, the demand will bring the 
price to p1=2. The next period supply will be y2=2, 
and the price p2=8. It is easy to see that the 
quantities and prices will diverge from the 
equilibrium. Hence the equilibrium outcome is not 
stable: if players miss the equilibrium they will 
never return to it. 
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Cobweb model (divergence) 
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Cobweb model (convergence) 
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Example III (Mutation) 

Let us consider the following 'Dove-Hawk' game 
 

 Second 
D H 

First 
D (4,4) (0, 8) 
H (8,0) (3,3) 

 



GT-15-15 

 
Example III (continued) 

If two animals find a prey they can behave like 
doves, i.e. share it peacefully. If one behaves like a 
dove and the other like a hawk, the militant one 
gets everything and the other one is left with 
nothing. If both of them behave like hawks, they 
loose a quarter of the prey and share the remaining 
part equally. The game has a unique Nash 
equilibrium (H,H). In other words, all animals are 
likely to behave as hawks. 
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Example III (continued) 

Now let us assume that in principle all animals 
behave like hawks, but there are few 'mutants' who 
behave like doves. Their behaviour is hereditary, 
but an individual never changes it. Thus the 'game' 
they play has a probabilistic structure. The payoffs 
depend on probabilities of encounters (D-D), (D-H 
or H-D; the matrix is symmetric), and (H-H). 
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Example III (continued) 

Let us assume that ε is the proportion of 'mutants' 
(i.e. those who turn out to be doves). Thus the 
proportion of 'non-mutants' is 1-ε. The expected 
outcome of the encounter of two individuals (in 
terms of 'payoffs' of the Dove-Hawk game) is 4ε for 
the 'mutant' and 8ε+3(1-ε) for a 'non-mutant'. The 
second number is larger than the first one, so the 
'mutant' population is likely to have smaller off-
spring and consequently its proportion will go down 
to zero. 
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(D.56) Replicator game 

Let us assume that a population consists of two 
types of individuals who play a symmetric D.14 
game. However, they do not choose strategies, but 
each is determined to apply a certain pure strategy 
and they 'pass it over' to their offspring. Let εi be 
the statistical frequency of individuals who play 
strategy i (ε1+ε2=1). It is further assumed that the 
population reproduces asexually (i.e. an individual 
has offspring without matching) and 'reproduction 
success' is proportional to the payoff from the 
game. 



GT-15-19 

 
(D.57) Evolutionary Stable Strategy 

 
A population plays a Replicator game (D.56). Let 
there be a pure-strategy Nash equilibrium (i*,i*) in 
the game. It is called an Evolutionary Stable 
Strategy (ESS) if 

εi*Pi*,i*+ε-i*Pi*,-i* > ε-i*P-i*,i*+εi*Pi*,-i*. 
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Note 

 
Being 'hawkish' in the 'Dove-Hawk' game is an 
ESS 
 

Note 
 
Definition of ESS can be extended to more 
complicated games, e.g. consisting of more than 
two strategies 
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Note 

 
There are Nash equilibria that do not determine an 
ESS. To see this, consider the game 
 

 Second 
I II 

First 
I (1,1) (0,0) 
II (0,0) (0,0) 

 
It has two Nash equilibria – (1,1) and (0,0) – but 
only the first one determines an ESS 
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(D.58) Replicator equation 
 

A population plays a Replicator game. Let εi(t) be 
the frequency of individuals of type i in the 
population at time t. A formula determining εi(t) as a 
function (perhaps an indirect one) of time and the 
game characteristics is called a Replicator 
equation. 
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Example IV (Replicator equation) 

 
The formula from D.58 may take the following 
(differential) form: 

dεi(t)/dt = εi(t)(fi(εi(t))-φ(εi(t))), where 
φ(εi(t))=ε1f1(εi(t))+ε2 f2(εi(t)). 

fi: [0,1]→ is a 'fitness' of type i to the environment 
characterized by the game and distribution of types 
in the population, and φ is the average 'fitness' in 
the population. 
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Example IV (continued) 

 
The Replicator equation predicts that the share of 
the type that is less fit than the average will 
decrease, and the share of the type that is more fit 
than the average will increase. It also lets estimate 
how fast the process will be. 
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Note 

 
The 'Dove-Hawk' game (Example III) predicts that 
the share of 'dovish' individuals will shrink, but – 
without a Replicator equation – it cannot be more 
specific about the pace of this process. 
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Note 

The definition of Replicator game (D.56) can be modified 
by assuming that the population is homogeneous (one 
type only), but there are two strategies to choose. As 
before, εi is the statistical frequency of individuals who play 
strategy i (ε1+ε2=1). Unlike in the original definition, playing 
a strategy is not only inherited, but it can also be changed 
by an individual. The change of εi is determined by a 
modified 'Replicator equation': dεi(t)/dt = αβεi(t)(fi(εi(t))-
φ(εi(t))), where α – learning rate (how fast individuals learn 
that changing strategy can be beneficial), and β – 
willingness to change (if an individual knows that the other 
strategy is more attractive, is it willing to change the 
behaviour); other symbols are as in D.58 
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Note 

D.57 (ESS) can be extended to account for 
Replicator games with more complicated 
characteristics (such as learning/adoption). 

 
(T.34) 

Let (i*,i*) be an ESS. Then the system of Replicator 
equations dεi(t)/dt = εi(t)(fi(εi(t))-φ(εi(t))) for i=1,2 has 

a stationary solution, εi*(t)=1=const. 
(difficult to prove) 
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Questions: 
 
Q-15 An Evolutionary Stable Strategy (ESS) in a population where a mutation appeared 
[a] assumes that mutants do not have offspring 
[b] assumes that individuals using ESS reproduce more successfully than mutants 
[c] cannot be reconciled with asexual reproduction 
[d] leads to gradual elimination of individuals who fail to adopt new reproduction techniques 
[e] none of the above 
 

Exercises: 
 
E-15 The 'Dove-Hawk' game from Example III is supplemented with the following 'Replicator 
equation': if the expected payoff of the mutant in the game at time t is lower than 1 then its 
share in the population halves every period ε(t+1)=ε(t)/2; if the expected payoff of the mutant in 
the game at time t is lower than 1/10 then ε(t+1)=0. Please discuss how much time it will take to 
eliminate mutants from the population. 

 



Outline solutions to exercises 
 
E-1. The 'only if' part is trivial, so one just needs to prove the 'if' part. The proof boils down to 

observing that any number α[0,1] can be approximated by a series α1/21+α2/22+α3/23+... (it can 

be approximated by a binary number; numbers α1, α2, α3, ...{0,1} are binary digits of this 
approximation). However, completing the proof requires the continuity assumption; which is not 
included in the original definition (D.3), but added in some theorems (as in T.4) 
 
E-2. A constant Arrow-Pratt coefficient of absolute risk aversion A>0 means that A=-u"(x)/u'(x). 
This is equivalent to u"(x)=-Au'(x). But u"(x)=(u'(x))'. Thus -Au'(x)=(u'(x))'. By integrating both 
sides (twice – and hence two constants may show up) we get u(x)=-econst∙e-Ax+const. 
 
E-3. Let us take two lotteries with identical means: L=(p1,...,pN) ,L'=(p'1,...,p'N) with 
p1x1+...+pNxN=p'1x1+...+p'NxN. To prove the first implication, we assume that p1u(x1)+...+pNu(xN) ≥ 

p'1u(x1)+...+p'Nu(xN) for every nondecreasing function u:X→. The second order stochastic 
dominance requires that the inequality holds for nondecreasing concave functions u and 
therefore it is obviously satisfied. To see that the converse is not true, one needs to observe 
that holding the inequality for concave functions does not imply that it also holds for non 
concave functions. 
 
E-4. The strategy U of the first player is understood as choosing the same location as the 
strategy L of the second player. Likewise, the strategy D of the first player is understood as 
choosing the same location as the strategy R of the second player. The players derive high 



utility if they meet and low utility if they do not meet (but they cannot communicate). The game 
has two Nash equilibria with payoffs (1,1). 
 
E-5. Achieving (4,4) implies that the outcome (U,R) is ruled out for sure. If, however, the first 
player knows that the second chooses L, then he/she would choose U rather than D. And vice 
versa, if the second knows that the first chooses D then he/she would choose R rather than L. 
Thus (U,R) cannot be ruled out for sure. If players chose their strategies randomly, each would 
achieve the payoff of 2.5. They may coordinate their choices by a signalling device which has 
three states (A, B, or C), each with the probability of 1/3 that are not perfectly recognized by the 
players. If A occurs the player 1 knows this, but if the state is B or C, the player does not know 
whether it is B or C. Conversely, the player 2 is perfectly informed about C, but he/she cannot 
distinguish between A and B. The correlated Nash equilibrium is: U when told A, and D when 
told (B,C); R when told C, and L when told (A,B). Please check that neither of the players has 
incentives to unilaterally deviate from these strategies, and – on average – they yield payoffs 3 
1/3 for each of them. Please also note that (U,L), (D,L), and (D,R) are used with 1/3 probabilities 
each, so that the worst outcome – (U,R) – is avoided. 
 
E-6. Replicating the calculations from the class example one gets the probability μ=1/4. Thus 
the Bayesian Nash equilibrium is a pair of strategies (SP(θP),SD(θD)) where SP(θP)=SP=(C if 
μ>1/4, D if μ<1/4), and SD(θD)=(C if the realization of θD is type "I", D if the realization of θD is 
type "II"). 
 
E-7. The craftsman's optimization problem reads: MaxL{40L1/2-0.5L-R}≥300 (the inequality is the 
participation constraint). To solve the maximization problem we disregard R (since it does not 



depend on L) and differentiate the expression 40L1/2-0.5L. The derivative reads 20L-1/2-0.5 
(equated to zero, this is the incentive compatibility constraint). It vanishes when L=1600. With 
such a labour input, the craftsman's revenue is 800-R. Thus R≤500 if the contract is to be 
accepted. 
 
E-8. Zermelo theorem may still hold if in terminal nodes x1 and x2 there are identical payoffs for 
the player who does not move in the node p(x1)=p(x2). When this happens, but the player who 
moves in p(x1)=p(x2) has different payoffs in various nodes of s(p(xi)), the action to be taken in 
p(xi) can be determined unambiguously. 
 
E-9. In the beginning only I supplies the market as a monopolist. Thus its maximum profit is πm= 
(a-c)2/(4b). If F decides to enter the rivals decide whether to cooperate or to attack. Cooperation 
means setting own supply at the Cournot level, i.e. qi=(a-c)/(3b), while an attack – setting own 
supply at the monopolistic level (as if the firm was the only supplier), i.e. qi=(a-c)/(2b). The 
profits result from the total supply. If both cooperate, they make the Cournot profit, i.e. πc= 
(a-c)2/(9b) each. If one sets the supply at the monopolistic level and the other at the Cournot 
one, then the total supply is 5(a-c)/(6b). The market will establish the price (a+5c)/6. The one 
who wanted to cooperate will make the profit (a-c)2/(18b), and the one who wanted to attack: 

 Incumbent (I) 

C if F enters A if F enters 

Entering Firm (F) 

D&C 0,(a-c)2/(4b) 0,(a-c)2/(4b) 

D&A 0,(a-c)2/(4b) 0,(a-c)2/(4b) 

E&C (a-c)2/(9b),(a-c)2/(9b) (a-c)2/(18b),(a-c)2/(12b) 

E&A (a-c)2/(12b),(a-c)2/(18b) 0,0 



(a-c)2/(12b). If both attack the total supply will be (a-c)/b, the market will establish the price c, i.e. 
wiping out all the profits. Thus the payoff matrix reads as above. If b>0 then the matrix is 

 Incumbent (I) 

C if F enters A if F enters 

Entering Firm (F) 

D&C 0,α 0,α 

D&A 0,α 0,α 

E&C β,β δ,γ 

E&A γ,δ 0,0 

with α>β>γ>δ>0. Thus SPNE is (β,β) (i.e. (E&C,C) as in the original game analyzed in the 
class), but – unlike that from the class – this game does not have other Nash equilibria. 
 
E-10. Of course, every game actually played has to be a finite one. Nevertheless, the players 
may not know how many rounds it has. Thus in any single round they do not have to be 
compelled (by the Folk theorem logic) to behave non-cooperatively. However, given the fact that 
any experiment lasts, say, no more than two hours (this information is commonly known), the 
players may contemplate probabilities that the round played is the last one. These probabilities 
increase in time, and they can approach 1 if the players sit in the lab almost two hours. Hence, 
the longer they play, the larger their incentive to expect that the round played is the last one. 
 
E-11. In the common resource game defined in the class, players are likely to drive the resource 
to extinction. To see this, please note that at

1=at
2=∆Kt/2 is not a Nash equilibrium; if either of the 

players extracts more, then he/she will be better off than by extracting sustainably. 
 



E-12. It may result in some changes, but players are likely to seek some other solutions. Faced 
with the risk of being excluded from the coalition, the third player is likely to offer to reduce 
his/her payoff, perhaps to the symmetric profile of [1/3,1/3,1/3], but the first player may then 

suggest to get rid of the second one, and to get =4/5 to be split into halves (2/5 each). This will 
improve the hypothetical situation of the first and the third at the expense of the second one. No 
matter how they manipulate with payoffs, there will always be somebody who can be made 

better off by suggesting an alternative coalition. Hence as long as =4/5, the core of the game 
is empty. 
 
E-13. The answer is [6,3,4,2] and p1=p2/2. At the first glance it seems as if we had 7 unknowns: 
x1A, x2A, x1B, x2B, α, β, and p1/p2. Nevertheless this number can easily be reduced to 5, since 
x1B=10- x1A and x2B=5- x2A. Thus let p=p1/p2, x1=x1A and x2=x2A. By the definition of the 
indifference curves: α=x1x2, and β=(10-x1)(5-x2). In the Walrasian equilibrium both indifference 
curves are tangent to the price ratio, i.e. -α/(x1)2=-p, and -β/(10-x1)2=-p, which lets calculate α 
and β: α=p(x1)2 and β=p(10-x1)2. Thus from the definitions of the indifference curves: p(x1)2=x1x2 
and p(10-x1)2=(10-x1)(5-x2); and after cancellations we get: px1=x2 and p(10-x1)=(5-x2). These 
are 2 equations with 3 unknowns. We need an additional one. By the necessity of equating 
expenditures with revenues (please note that the same equation is derived irrespective of 
whether the balance reflects the consumer A or B) we get p1(4-x1)=p2(x2-4), i.e. 

p1/p2=(4-x2)/(x1-4) (with x14). Hence the third equation reads p=(4-x2)/(x1-4). By substituting p 
into the previous equations we get: x1(4-x2)=x2(x1-4) and (10-x1)(4-x2)=(5-x2)(x1-4). These are 
two equations with two unknowns: 4x1-2x1x2=-4x2 and 60-9x1+2x1x2=14x2. By adding the two we 
get x2=6-x1/2 which can be substituted into the first one, yielding (x1)2-10x1+24=0. The last 
quadratic equation has two roots: x1=6 or x1=4 implying x2=3 or x2=4, respectively. The second 



solution has to be rejected (in order to calculate p properly; i.e. – as noted above – to avoid 
dividing into zero). 
 
E-14. The 'glove game' means producing a fully matched pair of gloves which has the value of 
one. The solutions mean how to distribute this value among its participants, i.e. players 1, 2, 
and 3. All but the utilitarian solutions are u1=u2=u3=1/3. The utilitarian solution is not unique; any 
combination of positive numbers, as long as u1+u2+u3=1 (for instance a combination u1=1, 
u2=u3=0, or combination of Shapley values u1=u2=1/6, u3=2/3) works. 
 
E-15. First of all, it needs to be clarified that the 'Dove-Hawk' game is understood as an 
'evolutionary' game with population of individuals who were aggressive (they behaved like 
hawks). All of a sudden there appeared a 'mutation' causing some individuals to be peacefully-
minded (they behave like doves). We look at doves as 'mutants', whose share in the population 
is small (ε(0) is non-negative but small). In order to see what will happen with the mutant 
offspring in period t=1 (to calculate ε(1)), we need to calculate the expected payoff for a mutant. 
The payoff enjoyed by such a mutant depends on who will be encountered: another mutant (a 
'dovish' individual) or a non-mutant (a 'hawkish' individual). In the first case the payoff is 4, while 
in the second case it is 0. Assuming that encounters are random, then the first case happens 
with the probability of ε(0), and the second – with the probability of 1-ε(0). Therefore the 
expected payoff is 4ε(0). 
 

Thus if 1/10≤4ε(0)<1, i.e. 0.025≤ε(0)<0.25 – then it may take 2,3,4, or 5 periods for ε(t) to fall 
below 0.025 and consequently the expected payoff to fall below 1/10. If the expected payoff 
4ε(0)≥1 (i.e. ε(0)≥0.25) then the exercise does not specify what may happen. By definition, 
ε(0)≤1. Therefore we may be curious about what happens if this initial share ranges from 25% 



to 100%. However in the exercise it is not specified what happens then. If we contemplate an 
initial share higher than 25% then the expected payoff will be higher than 1 which does not 
imply extinction in the exercise. But on the other hand, we interpret ε(0) as a 'small' number, so 
for all practical purposes this information is not relevant. 
 

To sum up, the 'dovish' mutation is not likely to survive (this is seen when we look at the 
replicator game). It will disappear immediately, or after a couple of years, depending on its initial 
share (this can be calculated using the replicator equation). If the initial share is close to 25%, it 
will survive up to the fifth period. 


